Skip to main content

Advertisement

Log in

Phase Equilibrium (VLE) Measurements in Ternary Mixture of SC CO2 + (0.564 Toluene/0.436 Chloroform) Underlying the SEDS Dispersion Process of Immiscible Polymer Blending

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The results of an experimental study of the phase equilibrium (VLE) properties of CO2 in organic mixture of (0.564 toluene/0.436 chloroform) at three selected isotherms of 313.15 K, 333.15 K, and 353.15 K in the pressure range from (0.95 to 12.27) MPa, involved in the supercritical SEDS dispersion process of immiscible polymer blending, are reported in the present work. The compatibility of immiscible linear high-pressure polyethylene (HPPE)/polycarbonate (PC) polymer blends with organic toluene + chloroform solvent in the presence of supercritical carbon dioxide (SC CO2) was studied. The PC and LHPPE polymers blending have been carried out in the pressure range from (8 to 25) MPa at temperatures between (313.15 and 353.15) K using the supercritical SEDS method. The kinetics of crystallization and phase transformation in polymer blends obtained by the melt blending (mixed in the molten state) and the supercritical SEDS methods have been studied using DSC technique. The thermodynamic characteristics such as (temperature, \(t_{{{\text{fus}}}}\), and enthalpy of fusion, \(\Delta_{{{\text{fus}}}} H\)) of the produced LHPPE/PC polymer blends are presented. The influence of the supercritical SEDS dispersion process parameters on the heat of fusion of the obtained LHPPE/PC polymer blends has been studied. The compatibility of LHPPE/PC blends was confirmed by studying the DSC melting-crystallization curve properties and investigating the morphology. The morphology of the LHPPE/PC polymer blends was examined using a scanning electron microscope (SEM) and the particle sizes depending on the operating temperature and pressure were studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. W.D. Callister, D.G. Rethwisch, Fundamentals of Materials Science and Engineering: An Integrated Approach, 5th edn. (Wiley, Hoboken, 2016)

    Google Scholar 

  2. A. Graziano, Sh. Jaffer, M. Sain, J. Elastomers Plast. 51, 1–46 (2018). https://doi.org/10.1177/009524431878380

    Article  Google Scholar 

  3. K. Cor, V.D. Martin, P. Christophe, J. Robert, Prog. Polym. Sci. 23, 707–757 (1998)

    Article  Google Scholar 

  4. L.A. Utracki, Polymer Alloys and Blends. Thermodynamics and Rheology (Hanser Publishers, Munich, 1989)

    Google Scholar 

  5. N.A.J. Platzer (ed.), Copolymers, Polyblends and Composites, vol. 142 (American Chemical Society, Washington, 1975), pp.76–84

    Book  Google Scholar 

  6. D.R. Paul, S. Newman (eds.), Polymers Blends, vol. 2 (Academic Press, New York, 1978), pp.35–62

    Google Scholar 

  7. M. Saleen, W.E. Baker, J. Appl. Polym. Sci. 39, 655–678 (1990). https://doi.org/10.1002/app.1990.070390316

    Article  Google Scholar 

  8. M. Xanthos, S.S. Dagli, Polym. Eng. Sci. 31, 929–935 (1991). https://doi.org/10.1002/pen.760311302

    Article  Google Scholar 

  9. N.C. Liu, W.E. Baker, Adv. Polym. Technol. 11, 249–262 (1992). https://doi.org/10.1002/adv.1992.060110403

    Article  Google Scholar 

  10. J.G. Bonner, P.S. Hope (eds.), Polymer Blends and Alloys (Blackie, Glasgow, 1993), pp.46–74

    Book  Google Scholar 

  11. M.K. Akkapeddi, Commercial Polymer Blends, Polymer Blends Handbook (Springer, Dordrecht, 2014), pp.1733–1883

    Book  Google Scholar 

  12. A.A. Tager, Physicochemistry of Polymers, 3rd edn. (Chemistry, Moscow, 1978)

    Google Scholar 

  13. M.F. Kemmere, T. Meyer, Supercritical Carbon Dioxide in Polymer Reaction Engineering (Wiley, Hoboken, 2005)

    Book  Google Scholar 

  14. F.M. Gumerov, A.N. Sabirzyanov, G.I. Gumerova, Sub- and Supercritical Fluids in Polymer Processing, 2nd edn. (FEN, Kazan, 2007)

    Google Scholar 

  15. S.G. Kazarian, Polymer Sci. Ser. 42, 78–101 (2000)

    Google Scholar 

  16. S. Cardea, E. Reverchon, Polymers 11, 1551–1555 (2019). https://doi.org/10.3390/polym11101551

    Article  Google Scholar 

  17. I.M. Gil’mutdinov, V.F. Khairutdinov, I.V. Kuznetsova, A.A. Mukhamadiev, F.R. Gabitov, F.M. Gumerov, A.N. Sabirzyanov, Russ. J. Phys. Chem. B 3, 1145–1153 (2009). https://doi.org/10.1134/S1990793109080041

    Article  Google Scholar 

  18. E. Kiran, J. Supercrit. Fluids 110, 126–153 (2016). https://doi.org/10.1016/j.supflu.2015.11.011

    Article  Google Scholar 

  19. J. Jung, M. Perrut, J. Supercrit. Fluids 20, 179–219 (2001). https://doi.org/10.1016/S0896-8446(01)00064-X

    Article  Google Scholar 

  20. C.L. Higginbotham, J.G.L. Yons, J.E. Kennedy, in Advances in Polymer Processing from Macro- to Nano-Scales. ed. by S. Thomas, Y. Weimin (Woodhead, Cambridge, 2009), pp.384–401

    Chapter  Google Scholar 

  21. M. Knez, M. Škerget, H. Knez, D. Čuček, in Supercritical Technology for Energy and Environmental Applications. ed. by M. Knez, M. Škerget, H. Knez, D. Čuček (Elsevier, Berlin, 2014), pp.31–67

    Chapter  Google Scholar 

  22. Y.P. Sun (ed.), Supercritical Fluid Technology in Materials Science and Engineering: Synthesis, Properties, and Applications (Marcel, Dekker, New York, 2002)

    Google Scholar 

  23. L. Yang, J.M. Huang, Y.G. Zu, C.H. Ma, H. Wang, X.W. Sun, Z. Sun, Food Chem. 128, 1152–1159 (2011). https://doi.org/10.1016/j.foodchem.2011.04.017

    Article  Google Scholar 

  24. M.C. Guaman-Balcazar, A. Montes, C. Pereyra, E.M. de la Ossa, J. Supercrit. Fluids 143, 294–304 (2019). https://doi.org/10.1016/j.supflu.2018.09.007

    Article  Google Scholar 

  25. V.F. Khairutdinov, F.R. Gabitov, F.M. Gumerov, B. Le Neindre, E.S. Vorob’ev, Russ. J. Phys. Chem. B 5, 1228–1239 (2011). https://doi.org/10.1134/S1990793111080082

    Article  Google Scholar 

  26. R. Ghaderi, P. Artursson, J. Carlfors, Pharm. Res. 16, 676–681 (1999). https://doi.org/10.1023/A:1018868423309

    Article  Google Scholar 

  27. T. Russell, F. Dehghani, N.R. Foster, J. Supercrit. Fluids 21, 159–177 (2001). https://doi.org/10.1016/S0896-8446(01)00090-0

    Article  Google Scholar 

  28. C. Vemavarapu, M.J. Mollan, M. Lodaya, T.E. Needham, Int. J. Pharm. 292, 1–16 (2005). https://doi.org/10.1016/j.ijpharm.2004.07.021

    Article  Google Scholar 

  29. E. Reverchon, R. Adami, J. Supercrit. Fluids 37, 1–22 (2006). https://doi.org/10.1016/j.supflu.2005.08.003

    Article  Google Scholar 

  30. A. Tabernero, E.M. del Valle, M.A. Galán, Chem. Eng. Proc. 60, 9–25 (2012). https://doi.org/10.1016/j.cep.2012.06.004

    Article  Google Scholar 

  31. E. Reverchon, J. Supercrit. Fluids 15, 1–21 (1999). https://doi.org/10.1016/S0896-8446(98)00129-6

    Article  Google Scholar 

  32. I.S. Khabriev, M.N. Patrusheva, V.F. Khairutdinov, R.M. Khuzakhanov, F.M. Gumerov, R.M. Garipov, Russ. J. Phys. Chem. B 12, 1229–1239 (2018). https://doi.org/10.1134/S1990793118080067

    Article  Google Scholar 

  33. V.F. Khairutdinov, F.M. Gumerov, I.S. Khabriev, J. Therm. Sci. 28, 519–546 (2019). https://doi.org/10.1007/s11630-019-1098-4

    Article  ADS  Google Scholar 

  34. I.S. Khabriev, V.F. Khairutdinov, F.M. Gumerov, R.M. Khuzakhanov, R.M. Garipov, I.M. Abdulagatov, J. Mol. Liq. 337, 116371 (2021). https://doi.org/10.1016/j.molliq.2021.116371

    Article  Google Scholar 

  35. V.F. Khairutdinov, F.M. Gumerov, F.R. Gabitov, Z.I. Zaripov, I.S. Khabriev, T.R. Akhmetzyanov, I.M. Abdulagatov, J. Chem. Eng. Data 65, 3306–3317 (2020). https://doi.org/10.1021/acs.jced.0c00104

    Article  Google Scholar 

  36. V.F. Khairutdinov, T.R. Akhmetzyanov, F.R. Gabitov, Z.I. Zaripov, F.M. Gumerov, M.I. Farakhov, A.V. Mukhutdinov, R.S. Yarullin, Pet. Sci. Technol. 34, 372–378 (2016). https://doi.org/10.1080/10916466.2015.1136951

    Article  Google Scholar 

  37. V.F. Khairutdinov, F.M. Gumerov, Z.I. Zaripov, I.S. Khabriev, L.Y. Yarullin, I.M. Abdulagatov, J. Supercrit. Fluids 156, 104628 (2020). https://doi.org/10.1016/j.supflu.2019.104628

    Article  Google Scholar 

  38. V.F. Khairutdinov, F.M. Gumerov, I.S. Khabriev, M.I. Farakhov, I.Z. Salikhov, I. Polishuk, I.M. Abdulagatov, Fluid Phase Equilib. 510, 112502 (2020). https://doi.org/10.1016/j.fluid.2020.112502

    Article  Google Scholar 

  39. V.F. Khairutdinov, F.M. Gumerov, M.I. Farakhov, Z.I. Zaripov, T.R. Akhmetzyanov, H.N. Truong, Pet. Sci. Technol. 37, 290–295 (2019). https://doi.org/10.1080/10916466.2018.1542440

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by a Grant from the Russian Science Foundation, Project Number 19-73-10029, https://rscf.ru/en/project/19-73-10029/. The present study was carried out using the equipment of the Center for Collective use «Nanomaterials and Nanotechnology» of the Kazan National Research Technological University.

Author information

Authors and Affiliations

Authors

Contributions

VFK contributed to investigation; ISK contributed to formal analysis and software; FMG contributed to conceptualization and methodology; RMK contributed to writing, reviewing, & editing of the manuscript and software; RMG contributed to investigation and resources collection; LYY contributed to conceptualization and methodology; IMA contributed to writing of the original draft.

Corresponding author

Correspondence to Ilmutdin M. Abdulagatov.

Ethics declarations

Competing interests

The author declares that we have no known competing financial interests or personal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khairutdinov, V.F., Khabriev, I.S., Gumerov, F.M. et al. Phase Equilibrium (VLE) Measurements in Ternary Mixture of SC CO2 + (0.564 Toluene/0.436 Chloroform) Underlying the SEDS Dispersion Process of Immiscible Polymer Blending. Int J Thermophys 44, 43 (2023). https://doi.org/10.1007/s10765-023-03154-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03154-w

Keywords

Navigation