Skip to main content
Log in

CFD Study on Influence of O2/CO2, O2/H2O Atmospheres and Shape of Furnace on Methane MILD Combustion

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this study, CFD modeling of a combustion system with internal gas circulation technology was carried out for a cylindrical chamber with 0.33 m height and a 0.025 m radius in which feed enters from a nozzle with 0.003 m diameter. The simulation implements the DRM-22 chemical mechanism, modified turbulence model, and EDC combustion model. The effect of chamber shape and diameter, nitrogen and carbon dioxide concentration of the input feed in MILD combustion was evaluated. The results indicated that by changing the combustion chamber shape from cylindrical to convergent, the temperature contour is more uniform and CO mass fraction at the output of the combustion chamber decreases. The maximum temperature for 901.4 Nml·min−1 methane and 9148 Nml·min−1 for divergent, cylindrical, and convergent cone chambers are 1820 K, 1663 K, and 1655 K, respectively. By increasing the radius of the combustion chamber, the temperature distribution becomes more uniform due to increasing the return flow, and the maximum temperature and CO emission at the chamber outlet decrease. By decreasing the nitrogen concentration on the input feed and increasing H2O and CO2 concentration, the temperature profile becomes more uniform so that the maximum temperature in the case without nitrogen (with 0.37 carbon dioxide and water vapor mass fraction) is 1510 K, while for a case with a 0.75 nitrogen mass fraction (without carbon dioxide and water vapor) is 1630 K. The results show that increasing H2O percentage and decreasing CO2 percentage causes temperature uniformity and CO mass fraction decreasing at the chamber outlet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. A. Cavaliere, M. de Joannon, Prog. Energy Combust. Sci. 30, 329–366 (2004). https://doi.org/10.1016/j.pecs.2004.02.003

    Article  Google Scholar 

  2. J.A. Wünning, J.G. Wünning, Prog. Energy Combust. Sci. 23, 81–94 (1997). https://doi.org/10.1016/S0360-1285(97)00006-3

    Article  Google Scholar 

  3. B. Ranjbar, M. Rahimi, F. Mohammadi, Int. J. Thermophys. 42, 99 (2021). https://doi.org/10.1007/s10765-021-02848-3

    Article  ADS  Google Scholar 

  4. S. Jaikumar, V. Srinivas, R.S. Meher, Int. J. Thermophys. 42, 91 (2021). https://doi.org/10.1007/s10765-021-02842-9

    Article  ADS  Google Scholar 

  5. Y. Cui, X. Lü, G. Xu, C. Nie, Sci. China Technol. Sci. 53, 2291–2298 (2010). https://doi.org/10.1007/s11431-010-4022-4

    Article  ADS  Google Scholar 

  6. C. Galletti, A. Parente, M. Derudi, R. Rota, L. Tognotti, Int. J. Hydrogen Energy 34, 8339–8351 (2009). https://doi.org/10.1016/j.ijhydene.2009.07.095

    Article  Google Scholar 

  7. S.R. Shabanian, P.R. Medwell, M. Rahimi, A. Frassoldati, A. Cuoci, Appl. Therm. Eng. 52, 538–554 (2013). https://doi.org/10.1016/j.applthermaleng.2012.12.024

    Article  Google Scholar 

  8. J. Mi, P. Li, C. Zheng, Chin. J. Chem. Eng. 18, 10–17 (2010). https://doi.org/10.1016/S1004-9541(08)60316-X

    Article  Google Scholar 

  9. Y. Tu, H. Liu, S. Chen, Z. Liu, H. Zhao, C. Zheng, Appl. Therm. Eng. 76, 64–75 (2015). https://doi.org/10.1016/j.applthermaleng.2014.11.007

    Article  Google Scholar 

  10. A. Mardani, A.F. Ghomshi, Energy 99, 136–151 (2016). https://doi.org/10.1016/j.energy.2016.01.016

    Article  Google Scholar 

  11. Y. Tu, M. Xu, D. Zhou, Q. Wang, W. Yang, H. Liu, Appl. Energy 240, 1003–1013 (2019). https://doi.org/10.1016/j.apenergy.2019.02.046

    Article  Google Scholar 

  12. A. Khoshhal, M. Rahimi, A.A. Alsairafi, Heat Mass Transf. 38, 1421–1427 (2011)

    Article  Google Scholar 

  13. M. Wang, J. Zhao, F. Guo, L. Zhu, D. Shen, X. Jiang, Therm. Sci. 26, 247–258 (2022). https://doi.org/10.2298/TSCI200916061W

    Article  Google Scholar 

  14. S. Wang, Z. Yuan, A. Fan, Chem. Eng. Process. 139, 44–50 (2019). https://doi.org/10.1016/j.cep.2019.03.019

    Article  Google Scholar 

  15. M. Mayrhofer, M. Koller, P. Seemann, R. Prieler, C. Hochenauer, Therm. Sci. Eng. Prog. 28, 101056 (2022). https://doi.org/10.1016/j.cep.2019.03.019

    Article  Google Scholar 

  16. E. Salamon, I. Cornejo, J.P. Mmbaga, A. Kołodziej, J. Lojewska, R.E. Hayes, Chem. Eng. Process. 153, 107956 (2020). https://doi.org/10.1016/j.cep.2020.107956

    Article  Google Scholar 

  17. M. Zhao, L. Liu, A. Fan, Chem. Eng. Process. 153, 108000 (2020). https://doi.org/10.1016/j.cep.2020.108000

    Article  Google Scholar 

  18. A. Gholizadeh, S.R. Shabanian, M. Ghadirian, J. Ahmadpour. Int. J. Hydrogen Energy 47, 127–150 (2022). https://doi.org/10.1016/j.ijhydene.2021.10.005

    Article  Google Scholar 

  19. Y. Tu, S. Xu, M. Xie, Z. Wang, H. Liu, Fuel 290, 119858 (2021). https://doi.org/10.1016/j.fuel.2020.119858

    Article  Google Scholar 

  20. M. Huang, R. Li, J. Xu, S. Cheng, H. Deng, B. Zhang, Z. Rong, Y. Li, Fuel 302, 121179 (2021). https://doi.org/10.1016/j.fuel.2021.121179

    Article  Google Scholar 

  21. Z. Zhang, X. Li, L. Zhang, C. Luo, Z. Mao, Y. Xu, J. Liu, G. Liu, C. Zheng, Fuel 237, 60–70 (2019). https://doi.org/10.1016/j.fuel.2018.09.133

    Article  Google Scholar 

  22. X. Deng, Y. Xiong, H. Yin, Q. Gao, J. Energy Resour. Technol. 138, 042212 (2016). https://doi.org/10.1115/1.4033141

    Article  Google Scholar 

  23. E.E. Fordoei, K. Mazaheri, A. Mohammadpour, Energy 218, 119524 (2021). https://doi.org/10.1016/j.energy.2020.119524

    Article  Google Scholar 

  24. M. Mansourian, R. Kamali, Acta Astronaut. 162, 546–554 (2019). https://doi.org/10.1016/j.actaastro.2019.07.002

    Article  ADS  Google Scholar 

  25. B. Razmjooei, A.R. Ravangard, L. Momayez, M. Ferchichi, J. Therm. Anal. Calorim. 147, 1901–1917 (2022). https://doi.org/10.1007/s10973-020-10263-3

    Article  Google Scholar 

  26. M. Zharfa, N. Karimi, Acta Astronaut. 184, 259–268 (2021). https://doi.org/10.1016/j.actaastro.2021.04.023

    Article  ADS  Google Scholar 

  27. S.H. Ajili, M. Haratian, A. Karimipour, Q.V. Bach, Int. J. Thermophys. 41, 128 (2020). https://doi.org/10.1007/s10765-020-02701-z

    Article  ADS  Google Scholar 

  28. G. Wu, X. Wang, X. Xie, C. Ji, Z. Gao, C. Zhao, Int. J. Thermophys. 42, 114 (2021). https://doi.org/10.1007/s10765-021-02866-1

    Article  ADS  Google Scholar 

  29. F. Wang, P. Li, J. Mi, Z. Shu, Fuel 292, 120315 (2021). https://doi.org/10.1016/j.fuel.2021.120315

    Article  Google Scholar 

  30. A. Kazakov, M. Frenklach, Reduced reaction sets based on GRIMech 1.2 [Online]. Available: http://www.me.berkeley.edu/drm/

  31. M. Frenklach, H. Wang, L. C-Yu, M. Goldenberg, C.T. Bowman, R.K. Hanson, et al. GRI-1.2. [Online]. Available: http://www.me.berkeley.edu/gri_mech/

  32. Y. Afarin, S. Tabejamaat, Int. J. Hydrogen Energy 38, 3447–3458 (2013). https://doi.org/10.1016/j.ijhydene.2012.12.065

    Article  Google Scholar 

  33. A. Mardani, S. Tabejamaat, Int. J. Hydrogen Energy 35, 11324–11331 (2010). https://doi.org/10.1016/j.ijhydene.2010.06.064

    Article  Google Scholar 

  34. K. Cheong, G. Wang, J. Mi, B. Wang, R. Zhu, W. Ren, Energy Fuels 32, 8817–8829 (2018). https://doi.org/10.1021/acs.energyfuels.8b01587

    Article  Google Scholar 

  35. P.R. Medwell, P.A. Kalt, B.B. Dally, Combust. Flame 52, 100–113 (2008). https://doi.org/10.1016/j.combustflame.2007.09.003

    Article  Google Scholar 

  36. Y. Liu, S. Chen, S. Liu, Y. Feng, K. Xu, C. Zheng, Energy 115, 26–37 (2016). https://doi.org/10.1016/j.energy.2016.09.009

    Article  Google Scholar 

Download references

Funding

The authors acknowledge the funding support of Babol Noshirvani University of Technology through Grant Program No. BNUT/388003/97.

Author information

Authors and Affiliations

Authors

Contributions

SB: Conceptualization, Methodology, Software, Validation, Writing-original draft; SRS: Supervision, Methodology, Correspondence, Conceptualization, Software, Validation, Writing—review & editing; HB: Investigation, Validation, Data curation.

Corresponding author

Correspondence to Seyed Reza Shabanian.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biabani, S., Shabanian, S.R. & Bakhshi, H. CFD Study on Influence of O2/CO2, O2/H2O Atmospheres and Shape of Furnace on Methane MILD Combustion. Int J Thermophys 44, 38 (2023). https://doi.org/10.1007/s10765-022-03151-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03151-5

Keywords

Navigation