Skip to main content

Advertisement

Log in

Measurements of the Dissociation Heats of Tetrabutylammonium Acetate and Tetrabutylammonium Hydroxide Ionic Semiclathrate Hydrates

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Ionic semiclathrate hydrates mainly consist of water typically together with tetrabutylammonium and tetrabutylphosphonium salts. Since ionic semiclathrate hydrates have the large dissociation heat under ambient pressure and temperature conditions, various ionic semiclathrate hydrates have been studied as safety and eco-friendly phase change materials. In this study, tetrabutylammonium acetate hydrates and tetrabutylammonium hydroxide hydrates were proposed as thermal energy storage media for air conditioning and cooling lithium-ion batteries. The dissociation heat, which was a significant thermophysical property to design thermal energy storage systems, were measured at various mass fractions. The largest dissociation heats of tetrabutylammonium acetate hydrates and tetrabutylammonium hydroxide hydrates were 212.9 ± 0.9 kJ⋅kg−1 and 200.4 ± 2.2 kJ⋅kg−1. As a result of the comparison of the dissociation heats of tetrabutylammonium acetate hydrates and tetrabutylammonium hydroxide hydrates with those of other ionic semiclathrate hydrates, it was found that tetrabutylammonium acetate hydrates and tetrabutylammonium hydroxide hydrates had the promising thermophysical properties as thermal energy storage media for air conditioning and cooling lithium-ion batteries, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All datasets presented in this study are included in the article/supplementary files.

References

  1. Y.A. Dyadin, K.A. Udachin, J. Incl. Phenom. 2, 61–72 (1984). https://doi.org/10.1007/BF00663240

    Article  Google Scholar 

  2. G.A. Jefferey, Acc. Chem. Res. 2, 344–352 (1969). https://doi.org/10.1021/ar50023a004

    Article  Google Scholar 

  3. K. Sato, H. Tokutomi, R. Ohmura, Fluid Phase Equilib. 337, 115–118 (2013). https://doi.org/10.1016/j.fluid.2012.09.016

    Article  Google Scholar 

  4. Y. Arai, R. Koyama, F. Endo, A. Hotta, R. Ohmura, J. Chem. Thermodyn. 131, 330–335 (2019). https://doi.org/10.1016/j.jct.2018.11.017

    Article  Google Scholar 

  5. Y. Yamauchi, T. Yamasaki, F. Endo, A. Hotta, R. Ohmura, Chem. Eng. Technol. 40, 1810–1816 (2017). https://doi.org/10.1002/ceat.201600459

    Article  Google Scholar 

  6. T. Iwai, T. Miyamoto, N. Kurokawa, A. Hotta, R. Ohmura, J. Energy Storage 52, 104801 (2022). https://doi.org/10.1016/j.est.2022.104801

    Article  Google Scholar 

  7. J. Gholinezhad, A. Chapoy, B. Tohidi, Chem. Eng. Res. Des. 89, 1747–1751 (2011). https://doi.org/10.1016/j.cherd.2011.03.008

    Article  Google Scholar 

  8. K. Iino, Y. Sakakibara, T. Suginaka, R. Ohmura, J. Chem. Thermodyn. 71, 133–136 (2014). https://doi.org/10.1016/j.jct.2013.12.001

    Article  Google Scholar 

  9. T. Kobori, S. Muromachi, R. Ohmura, J. Chem. Eng. Data 60, 299–303 (2015). https://doi.org/10.1021/je500589z

    Article  Google Scholar 

  10. H. Akiba, R. Ohmura, J. Chem. Thermodyn. 97, 83–87 (2016). https://doi.org/10.1016/j.jct.2016.01.014

    Article  Google Scholar 

  11. R.V. Belosludov, R.K. Zhdanov, K.V. Gets, Y.Y. Bozhko, V.R. Belosludov, Y. Kawazoe, J. Phys. Chem. 124, 18474–18481 (2020). https://doi.org/10.1021/acs.jpcc.0c05947

    Article  Google Scholar 

  12. M. Maruyama, S. Kao, H. Kiyokawa, S. Takeya, R. Ohmura, Energy Fuels 36, 10601–10609 (2022). https://doi.org/10.1021/acs.energyfuels.2c01355

    Article  Google Scholar 

  13. A.A. Karimi, O. Dolotko, D. Dalmazzone, Fluid Phase Equib. 361, 175–180 (2014). https://doi.org/10.1016/j.fluid.2013.10.043

    Article  Google Scholar 

  14. ASHRAE TC 9.9 2011 Thermal Guidelines for Data Processing Environments—Expanded Data Center Classes and Usage Guidance. (American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc., 2011), https://www.ashrae.org/. Accessed 2 Nov 2022

  15. B. Shabani, M. Biju, Energies 8, 10153–10177 (2015). https://doi.org/10.3390/en80910153

    Article  Google Scholar 

  16. O. Nashed, J.C.H. Koh, B. Lal, Procedia Eng. 148, 1351–1356 (2016). https://doi.org/10.1016/j.proeng.2016.06.586

    Article  Google Scholar 

  17. H. Nakayama, S. Torigata, Bull. Chem. Soc. Jpn. 57, 171–174 (1984). https://doi.org/10.1246/bcsj.57.171

    Article  Google Scholar 

  18. R. Feistel, W. Wagner, J. Phys. Chem. Ref. Data 35, 1021–1047 (2006). https://doi.org/10.1063/1.2183324

    Article  ADS  Google Scholar 

  19. T.V. Rodinova, I.S. Terekhova, G.V. Villevald, T.D. Karpova, A.Y. Manakov, J. Therm. Anal. Calorim. 128, 1165–1174 (2017). https://doi.org/10.1007/s10973-016-6023-4

    Article  Google Scholar 

  20. T. Iwai, I. Ohta, K. Hiraga, K. Kashima, A. Hotta, R. Ohmura, Fluid Phase Equilib. 562, 113561 (2022). https://doi.org/10.1016/j.fluid.2022.113561

    Article  Google Scholar 

  21. P.G. Lafond, K.A. Olcott, E.D. Sloan, C.A. Koh, A.K. Sum, J. Chem. Thermodyn. 48, 1–6 (2012). https://doi.org/10.1016/j.jct.2011.12.023

    Article  Google Scholar 

  22. W. Lin, D. Dalmazzone, W. Fürst, A. Delahaye, L. Fournaison, P. Clain, J. Chem. Thermodyn. 61, 132–137 (2013). https://doi.org/10.1016/j.jct.2013.02.005

    Article  Google Scholar 

  23. T. Suginaka, H. Sakamoto, K. Iino, S. Takeya, M. Nakajima, R. Ohmura, Fluid Phase Equilib. 317, 25–28 (2012). https://doi.org/10.1016/j.fluid.2011.12.010

    Article  Google Scholar 

  24. J. Shimada, M. Shimada, T. Sugahara, K. Tsunashima, Fluid Phase Equilib. 485, 61–66 (2019). https://doi.org/10.1016/j.fluid.2018.11.038

    Article  Google Scholar 

  25. T.V. Rodinova, A.Y. Manakov, Y.G. Stenin, G.V. Villevald, T.D. Karpova, J. Incl. Macrocycl. Chem. 61, 107–111 (2008). https://doi.org/10.1007/s10847-007-9401-5

    Article  Google Scholar 

  26. Y.A. Dyadin, I.S. Terekhova, T.M. Polyanskaya, L.S. Aladko, J. Struct. Chem. 17, 566–571 (1976). https://doi.org/10.1007/BF00753438

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Ohmura Laboratory members for valuable discussion and support.

Funding

This study was supported by a Keirin-racing-based research-promotion fund from the JKA Foundation (2022M-270).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was contributed by TI, RO; methodology was contributed by TI, ST; formal analysis and investigation were contributed by TI, ST, RO; writing—original draft preparation, was contributed by TI; writing—review and editing, was contributed by RO; funding acquisition was contributed by RO; Resources were contributed by AH, RO; supervision was contributed by RO.

Corresponding author

Correspondence to Ryo Ohmura.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwai, T., Takamura, S., Hotta, A. et al. Measurements of the Dissociation Heats of Tetrabutylammonium Acetate and Tetrabutylammonium Hydroxide Ionic Semiclathrate Hydrates. Int J Thermophys 44, 42 (2023). https://doi.org/10.1007/s10765-022-03150-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03150-6

Keywords

Navigation