Skip to main content

Advertisement

Log in

Measurements and Derivation of the Spray Simulation Required Physical Properties of Polyoxymethylene Dimethyl Ethers (PODEn)

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Polyoxymethylene dimethyl ethers (abbreviated as PODEn or OMEn) is a type of e-fuel with the structure CH3O(CH2O)nCH3. The carbon neutrality throughout its life cycle makes PODEn an attractive alternative to fossil fuels. Burning PODEn instead of fossil fuel can significantly reduce carbon monoxide, carbon dioxide, hydrocarbon, and especially particulate matter emissions. The heat capacity, surface tension, thermal conductivity, latent heat of vaporization, density, viscosity, and vapor pressure from room temperature to the critical point of a fuel are required for its spray simulations. In this study, for PODEn with 1 ≤ n ≤ 6, the isobaric heat capacity, surface tension, and thermal conductivity were measured with the sapphire method, pendant drop method, and transient plane source method, respectively, around room temperature and at atmospheric pressure. Furthermore, relevant calculation methods extended all the physical properties mentioned above from 298.15 K to the critical points. The calculation results were verified against and regressed with the experimental data obtained from previous literature or the experiments conducted in this study. The results of this study can greatly reduce the uncertainty in the PODEn spray simulations due to the absence of physical property data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. European Union, European climate law (2021). https://climate.ec.europa.eu/eu-action/european-green-deal/european-climate-law_en. Accessed 12 January 2023

  2. United States Department of State, THE LONG-TERM STRATEGY OF THE UNITED STATES-Pathways to Net-Zero Greenhouse Gas Emissions by 2050 (2021). https://www.state.gov/tackling-the-climate-crisis-together/longtermstrategy-3/. Accessed 12 January 2023

  3. Ministry of Foreign Affairs of the People's Republic of China, Statement by Xi Jinping President of the People's Republic of China at the general debate of the 75th session of the United Nations General Assembly (2020). https://www.fmprc.gov.cn/mfa_eng/wjdt_665385/zyjh_665391/202009/t20200922_678904.html. Accessed 12 January 2023.

  4. S. Deutz, D. Bongartz, B. Heuser, A. Kätelhön, L. Schulze-Langenhorst, A. Omari, M. Walters, J. Klankermayer, W. Leitner, A. Mitsos, S. Pischinger, A. Bardow, Energy Environ. Sci. 11, 331 (2018). https://doi.org/10.1039/c7ee01657c

    Article  Google Scholar 

  5. J. Burger, M. Siegert, E. Ströfer, H. Hasse, Fuel 89, 3315 (2010). https://doi.org/10.1016/j.fuel.2010.05.014

    Article  Google Scholar 

  6. M. Natarajan, E.A. Frame, D.W. Naegeli, T. Asmus, W. Clark, J. Garbak, A. Manuel, D. González, E. Liney, W. Piel, J.P. Wallace, SAE Technical Paper 2001-01-3631, (2001). https://doi.org/10.4271/2001-01-3631

  7. C.K. Westbrook, W.J. Pitz, H.J. Curran, J. Phys. Chem. A 110, 6912 (2006). https://doi.org/10.1021/jp056362g

    Article  Google Scholar 

  8. Y. Ren, Z. Huang, H. Miao, Y. Di, D. Jiang, K. Zeng, B. Liu, X. Wang, Fuel 87, 2691 (2008). https://doi.org/10.1016/j.fuel.2008.02.017

    Article  Google Scholar 

  9. J. Liu, H. Wang, Y. Li, Z. Zheng, Z. Xue, H. Shang, M. Yao, Fuel 177, 206 (2016). https://doi.org/10.1016/j.fuel.2016.03.019

    Article  Google Scholar 

  10. H. Liu, Z. Wang, J. Wang, X. He, Y. Zheng, Q. Tang, J. Wang, Energy 88, 793 (2015). https://doi.org/10.1016/j.energy.2015.05.088

    Article  Google Scholar 

  11. Z. Zheng, W. Liu, H. Liu, L. Feng, Y. Cui, S. Zhang, M. Yao, Sci. China: Technol. Sci. 64, 1611 (2021). https://doi.org/10.1007/s11431-020-1764-y

    Article  ADS  Google Scholar 

  12. J.V. Pastor, A. García, C. Micó, F. Lewiski, Combust. Flame 230, 111437 (2021). https://doi.org/10.1016/j.combustflame.2021.111437

    Article  Google Scholar 

  13. L. Lautenschütz, D. Oestreich, P. Seidenspinner, U. Arnold, E. Dinjus, J. Sauer, Fuel 173, 129 (2016). https://doi.org/10.1016/j.fuel.2016.01.060

    Article  Google Scholar 

  14. J. Qi, Y. Hu, J. Niu, W. Ma, S. Jiang, Y. Wang, X. Zhang, Y. Jiang, Fuel 234, 135 (2018). https://doi.org/10.1016/j.fuel.2018.07.007

    Article  Google Scholar 

  15. L. Tong, H. Wang, Z. Zheng, R. Reitz, M. Yao, Fuel 181, 878 (2016). https://doi.org/10.1016/j.fuel.2016.05.037

    Article  Google Scholar 

  16. H. Duan, M. Jia, Y. Chang, H. Liu, Fuel 256, 115907 (2019). https://doi.org/10.1016/j.fuel.2019.115907

    Article  Google Scholar 

  17. H. Duan, M. Jia, J. Bai, Y. Li, Int. J. Engine Res. (2021). https://doi.org/10.1177/14680874211013667

    Article  Google Scholar 

  18. H. Duan, M. Jia, Y. Li, T. Wang, Fuel 298, 120838 (2021). https://doi.org/10.1016/j.fuel.2021.120838

    Article  Google Scholar 

  19. J. Pan, J.T. Wu, Z.G. Liu, X.G. Jin, Int. J. Thermophys. 25, 701 (2004). https://doi.org/10.1023/B:IJOT.0000034233.54418.d7

    Article  ADS  Google Scholar 

  20. J.T. Wu, Z.Y. Xu, Z.G. Liu, B. Wang, J. Chem. Eng. Data 50, 966 (2005). https://doi.org/10.1021/je049559v

    Article  Google Scholar 

  21. O. Borodin, G.D. Smith, J. Phys. Chem. B 110, 6279 (2006). https://doi.org/10.1021/jp055079e

    Article  Google Scholar 

  22. X. Wang, J. Pan, J. Wu, Z. Liu, J. Chem. Eng. Data 51, 1394 (2006). https://doi.org/10.1021/je060097q

    Article  Google Scholar 

  23. Y. Ren, F.K. Wang, Z.H. Huang, Energy Fuels 21, 1628 (2007). https://doi.org/10.1021/ef070065o

    Article  Google Scholar 

  24. P. Zheng, X. Meng, J. Wu, Z. Liu, Int. J. Thermophys. 29, 1244 (2008). https://doi.org/10.1007/s10765-008-0503-0

    Article  ADS  Google Scholar 

  25. F. Comelli, S. Ottani, R. Francesconi, C. Castellari, J. Chem. Eng. Data 47, 1226 (2002). https://doi.org/10.1021/je0255224

    Article  Google Scholar 

  26. F. Wang, J. Wu, Z. Liu, Energy Fuels 20, 2471 (2006). https://doi.org/10.1021/ef060231c

    Article  Google Scholar 

  27. R.H. Boyd, J. Polym. Sci. 50, 133 (1961). https://doi.org/10.1002/pol.1961.1205015316

    Article  ADS  Google Scholar 

  28. M.H.H. Fechter, P. Haspel, C. Hasse, A.S. Braeuer, Fuel 303, 121274 (2021). https://doi.org/10.1016/j.fuel.2021.121274

    Article  Google Scholar 

  29. M. Kang, H. Song, F. Jin, J. Chen, J. Fuel Chem. Technol. 45, 837 (2017). https://doi.org/10.1016/s1872-5813(17)30040-3

    Article  Google Scholar 

  30. Q. Liu, X. Zhang, B. Ma, Y. Lin, J. Chem. Thermodyn. 113, 151 (2017). https://doi.org/10.1016/j.jct.2017.06.002

    Article  Google Scholar 

  31. T. He, Z. Wang, X. You, H. Liu, Y. Wang, X. Li, X. He, Fuel 212, 223 (2018). https://doi.org/10.1016/j.fuel.2017.09.080

    Article  Google Scholar 

  32. B. Li, K.H. Yoo, Z. Wang, A.L. Boehman, J. Wang, Energy Fuels 33, 11841 (2019). https://doi.org/10.1021/acs.energyfuels.9b02013

    Article  Google Scholar 

  33. Q. Lin, K.L. Tay, D. Zhou, W. Yang, Energy Convers. Manage. 185, 35 (2019). https://doi.org/10.1016/j.enconman.2019.02.007

    Article  Google Scholar 

  34. D. Lv, Y. Chen, Y. Chen, X. Guo, H. Chen, H. Huang, Energy Convers. Manage. 199, 112070 (2019). https://doi.org/10.1016/j.enconman.2019.112070

    Article  Google Scholar 

  35. J. Liu, (Tianjin University, Tianjin, 2018)

  36. J. Peleteiro, J. Troncoso, D. González-Salgado, J.L. Valencia, C.A. Cerdeiriña, L. Romaní, Int. J. Thermophys. 25, 787 (2004). https://doi.org/10.1023/B:IJOT.0000034237.54486.bb

    Article  ADS  Google Scholar 

  37. E. Zorębski, P. Góralski, B. Godula, M. Zorębski, J. Chem. Thermodyn. 68, 145 (2014). https://doi.org/10.1016/j.jct.2013.08.033

    Article  Google Scholar 

  38. A. Mejía, M. Cartes, H. Segura, J. Chem. Thermodyn. 43, 1395 (2011). https://doi.org/10.1016/j.jct.2011.04.005

    Article  Google Scholar 

  39. H. Jiang, Y. Zhao, J. Wang, F. Zhao, R. Liu, Y. Hu, J. Chem. Thermodyn. 64, 1 (2013). https://doi.org/10.1016/j.jct.2013.04.015

    Article  Google Scholar 

  40. S.E. Gustafsson, Rev. Sci. Instrum. 62, 797 (1991). https://doi.org/10.1063/1.1142087

    Article  ADS  Google Scholar 

  41. M.J. Assael, E.A. Sykioti, M.L. Huber, R.A. Perkins, J. Phys. Chem. Ref. Data 123, 174503 (2005). https://doi.org/10.1063/1.4797368

    Article  Google Scholar 

  42. M.J. Assael, E. Charitidou, C.A. Nieto de Castro, Int. J. Thermophys. 9, 813 (1988). https://doi.org/10.1007/bf00503247

    Article  ADS  Google Scholar 

  43. R.C. Reid, J.M. Prausnitz, B.E. Poling, The Properties of Gases & Liquids, 4th edn. (McGraw-Hill, New York, 1987)

    Google Scholar 

  44. F. Dai, K. Xin, Y. Song, M. Shi, Y. Yu, Q. Li, Fluid Phase Equilib. 409, 466 (2016). https://doi.org/10.1016/j.fluid.2015.11.009

    Article  Google Scholar 

  45. Y. Song, J.Q. Li, H. Zhang, X. Li, J. Ding, X. Sun, Y. Lin, Fluid Phase Equilib. 377, 33 (2014). https://doi.org/10.1016/j.fluid.2014.06.019

    Article  Google Scholar 

  46. A. Kulkarni, E.J. Garcia, A. Damone, M. Schappals, S. Stephan, M. Kohns, H. Hasse, J. Chem. Theory Comput. 16, 2517 (2020). https://doi.org/10.1021/acs.jctc.9b01106

    Article  Google Scholar 

  47. D.M. McEachern, J.E. Kilpatrick, J. Chem. Phys. 41, 3127 (1964). https://doi.org/10.1063/1.1725685

    Article  ADS  Google Scholar 

  48. K. Zhang, J.T. Wu, Z.G. Liu, J. Chem. Eng. Data 51, 1743 (2006). https://doi.org/10.1021/je0601614

    Article  Google Scholar 

  49. J.A. Dean, Lange’s Handbook of Chemistry, 15th edn. (McGraw-Hill, New York, 1999)

    Google Scholar 

  50. D. Sanfilippo, R. Patrini, M. Marchionna, Use of an oxygenated product as a substitute of gas oil in diesel engines (2007). https://patents.google.com/patent/US7235113B2

Download references

Funding

The research leading to these results received funding from the National Key Research and Development Program of China under Grant Agreement No. 2022YFE0199600.

Author information

Authors and Affiliations

Authors

Contributions

HL wrote the main manuscript text and finished the main work of this study, including experiments, calculations, data analysis, and literature search. As the supervisor of HL, MJ provided key guidance on the related work and revised the manuscript.

Corresponding author

Correspondence to Ming Jia.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 31 kb)

Supplementary file2 (DOCX 31 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Jia, M. Measurements and Derivation of the Spray Simulation Required Physical Properties of Polyoxymethylene Dimethyl Ethers (PODEn). Int J Thermophys 44, 41 (2023). https://doi.org/10.1007/s10765-022-03147-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03147-1

Keywords

Navigation