Skip to main content
Log in

Surface Tensions for Binary Mixtures of Alkyl Levulinate + Alkanol: Measurement and Modeling

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The surface tensions of binary mixtures alkyl levulinate (methyl levulinate and ethyl levulinate) + n-alkanols (methanol, ethanol, 1-propanol, and 1-butanol) at several temperatures (283.15 K, 298.15 K, and 313.15 K) and at atmospheric pressure were reported. For each binary mixture, the surface tension deviations were obtained and correlated with composition by using the Redlich–Kister polynomial expansion. These surface tension deviations vary from positive values for methanol to negative ones for 1-butanol. Regarding the behavior of surface tension deviation with alkyl levulinate, ethyl levulinate presents higher positive values or less negative ones than methyl levulinate. The computation of the surface tension was obtained with the linear square gradient theory plus the Peng–Robinson–Stryjek–Vera (PRSV-EoS). Phase equilibria for all the mixtures were predicted, because \(k_{12} = 0\) was set. Then, the densities of the homogeneous phases were obtained and used in the calculation of the surface tension, which was obtained according to two approaches, i.e., prediction and fitted, and using values constant and correlations for the parameters for both approaches. The predictive approach was not adequate because a high global deviation was obtained (3.97 %), while two adjustable parameters for the mixture in LSGT improved the representation of the variation of experimental surface tension with temperature (deviation = 1.08 %). Therefore, the simplified version of square gradient theory named LSGT guarantees good results of fitting the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

Data availability is not applicable.

Abbreviations

\(\chi\) :

Influence parameter

\(\chi _{12}\) :

Cross-influence parameter

A :

Adjustable parameter of the influence parameter

a :

Cohesion parameter in the PRSV-EoS

AAD :

Statistical deviation

B :

Adjustable parameter of the influence parameter

b :

Covolume parameter in the PRSV-EoS

\(c_1\) :

Adjustable parameter of the cohesive parameter

\(c_2\) :

Adjustable parameter of the cohesive parameter

\(f_0\) :

Helmholtz energy density

\(k_{12}\) :

Interaction parameter for the quadratic mixing rule

N :

Number of experimental points

n :

Number of points in the linear gradient theory

\(n_c\) :

Number of components of the mixture

P :

Absolute pressure

R :

Universal gas constant

T :

Absolute temperature

w :

Mole fraction

x :

Liquid mole fraction

y :

Vapor mole fraction

z :

Interfacial position

\(\beta _{12}\) :

Symmetric parameter of the linear gradient theory

\(\mu\) :

Chemical potential

\(\rho\) :

Molar density

\(\sigma\) :

Surface tension

c :

Critical condition

ij :

Species

ref :

Reference

0:

Equilibrium condition

calc :

Calculated

exp :

Experimental

L :

Liquid phase

V :

Vapor phase

References

  1. H. Ariba, Y. Wang, C. Devouge-Boyer, R.P. Stateva, S. Leveneur, Physicochemical properties for the reaction systems: levulinic acid, its esters, and \(\gamma\)-valerolactone. J. Chem. Eng. Data 65(6), 3008–3020 (2020)

    Article  Google Scholar 

  2. N.A.S. Ramli, F. Abdullah, Study of density, surface tension, and refractive index of binary mixtures containing alkyl levulinate and n-alcohol from 298.15 to 323.15 K. J. Chem. Eng. Data 66(5), 1856–1876 (2021)

    Article  Google Scholar 

  3. Abidi, R.: Contribution à l’étude des systèmes binaires contenant des lévulinates d’alkyle et d’alcools. PhD thesis, Universidad de Zaragoza (2022)

  4. R. Abidi, M. Artal, M. Hichri, C. Lafuente, Experimental and modelled thermophysical behaviour of methyl levulinate (methyl 4-oxopentanoate) and n-alkanol systems. J. Mol. Liq. 339, 116739 (2021)

    Article  Google Scholar 

  5. B.S. Carey, L.E. Scriven, H.T. Davis, Semiempirical theory of surface tensions of pure normal alkanes and alcohols. AIChE J. 24(6), 1076–1080 (1978)

    Article  Google Scholar 

  6. B.S. Carey, L.E. Scriven, H.T. Davis, Semiempirical theory of surface tension of binary systems. AIChE J. 26(5), 705–711 (1980)

    Article  Google Scholar 

  7. A.J. Resk, L. Peereboom, A.K. Kolah, D.J. Miller, C.T. Lira, Phase equilibria in systems with levulinic acid and ethyl levulinate. J. Chem. Eng. Data 59(4), 1062–1068 (2014)

    Article  Google Scholar 

  8. Y.-X. Zuo, E.H. Stenby, Calculation of surface tensions of polar mixtures with a simplified gradient theory model. J. Chem. Eng. Jpn. 29(1), 159–165 (1996)

    Article  Google Scholar 

  9. Y.-X. Zuo, E.H. Stenby, A linear gradient theory model for calculating interfacial tensions of mixtures. J. Colloid Interface Sci. 182(1), 126–132 (1996)

    Article  ADS  Google Scholar 

  10. D.-Y. Peng, D.B. Robinson, A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15(1), 59–64 (1976)

    Article  Google Scholar 

  11. R. Stryjek, J.H. Vera, Prsv: An improved peng-robinson equation of state for pure compounds and mixtures. Can. J. Chem. Eng. 64(2), 323–333 (1986)

    Article  Google Scholar 

  12. A. Hernández, M. Cartes, A. Mejía, Measurement and modeling of isobaric vapor-liquid equilibrium and isothermal interfacial tensions of ethanol+ hexane+ 2, 5-dimethylfuran mixture. Fuel 229, 105–115 (2018)

    Article  Google Scholar 

  13. A. Hernández, Interfacial behavior prediction of alcohol+ glycerol mixtures using gradient theory. Chem. Phys. 534, 110747 (2020)

    Article  Google Scholar 

  14. A. Hernández, Modeling vapor–liquid equilibria and surface tension of carboxylic acids + water mixtures using Peng–Robinson equation of state and gradient theory. Int. J. Thermophys. 42(13), 1–27 (2021)

    ADS  Google Scholar 

  15. A. Hernández, R. Tahery, Modeling of phase equilibria and surface tension for n, n-dimethylcyclohexylamine + alcohol mixtures at different temperatures. Int. J. Thermophys. 42(67), 1–27 (2021)

    ADS  Google Scholar 

  16. A. Hernández, R. Tahery, Modeling of surface tension and phase equilibria for water+ amine mixtures from (298.15 to 323.15) K using different thermodynamic models. J. Solut. Chem. 51, 31–57 (2022)

  17. I. Cachadiña, A. Hernández, À. Mulero, Surface tension of esters. Temperature dependence of the influence parameter in density gradient theory with Peng–Robinson equation of state. Case Stud. Therm. Eng. 36, 102193 (2022)

  18. J.M. Prausnitz, R.N. Lichtenthaler, E.G. De Azevedo, Molecular Thermodynamics of Fluid-Phase Equilibria (Prentice Hall, Upper Saddle River, 1998)

    Google Scholar 

  19. L. Lomba, M. Carlos Lafuente, I. Gascón. García-Mardones, B. Giner, Thermophysical study of methyl levulinate. J. Chem. Thermodyn. 65, 34–41 (2013)

    Article  Google Scholar 

  20. L. Lomba, B. Giner, I. Bandrés, C. Lafuente, M.R. Pino, Physicochemical properties of green solvents derived from biomass. Green Chem. 13(8), 2062–2070 (2011)

    Article  Google Scholar 

  21. O. Redlich, A.T. Kister, Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40(2), 345–348 (1948)

    Article  Google Scholar 

  22. T.E. Daubert, R.P. Danner, Danner, Data Compilation. Tables of Properties of Pure Compounds (DIPPR, New York, 1985)

    Google Scholar 

  23. E.D. Nikitin, A.P. Popov, N.S. Bogatishcheva, M.Z. Faizullin, Critical temperatures and pressures, heat capacities, and thermal diffusivities of levulinic acid and four n-alkyl levulinates. J. Chem. Thermodyn. 135, 233–240 (2019)

    Article  Google Scholar 

  24. R.H. Weiland, T. Chakravarty, A.E. Mather, Solubility of carbon dioxide and hydrogen sulfide in aqueous alkanolamines. Ind. Eng. Chem. Res. 32(7), 1419–1430 (1993)

    Article  Google Scholar 

  25. R.H. Weiland, T. Chakravarty, and A.E. Mather. Solubility of carbon dioxide and hydrogen sulfide in aqueous alkanolamines.[erratum to document cited in ca119: 35070]. Ind. Chem. Res. 34(9), 3173 (1995)

  26. K.A.G. Schmidt, G.K. Folas, B. Kvamme, Calculation of the interfacial tension of the methane–water system with the linear gradient theory. Fluid Phase Equilib. 261(1–2), 230–237 (2007)

    Article  Google Scholar 

  27. C.M. Kinart, W.J. Kinart, A. Bald, A. Szejgis, Study of the intermolecular interactions in liquid n,n-dimethylacetamide–water mixtures. Phys. Chem. Liquids 30(3), 151–157 (1995)

    Article  Google Scholar 

  28. R. Gopal, S.A. Rizvi, Physical properties of some mono-and dialkyl-substituted amides at different temperatures. J. Indian Chem. Soc. 43, 179–182 (1966)

    Google Scholar 

  29. Y.V. Efremov, Density surface tension vapour pressure and critical parameters of alcohols. Russ. J. Phys. Chem. USSR 40(6), 667 (1966)

    Google Scholar 

  30. J.A. Dean, N.A. Lange, Lange’s Handbook of Chemistry, 13th edn (McGraw-Hill, New York, 1985)

    Google Scholar 

  31. B.Y. Teitel’baum, T.A. Gortalova, E.E. Sidorova, Polithermic study of surface tension of aqueus solutions of alcohols. Zh. Fiz. Khim. 25, 911–919 (1951)

    Google Scholar 

  32. A.E. Andreatta, E. Rodil, A. Arce, A. Soto, Surface tension of binary mixtures of 1-alkyl-3-methyl-imidazolium bis (trifluoromethylsulfonyl) imide ionic liquids with alcohols. J. Solut. Chem. 43(2), 404–420 (2014)

    Article  Google Scholar 

  33. Z. Chen, S. Xia, P. Ma, Measuring surface tension of liquids at high temperature and elevated pressure. J. Chem. Eng. Data 53(3), 742–744 (2008)

    Article  Google Scholar 

  34. A. Watanabe, S. Sugiyama, Temperature coefficient of surface tension for organic liquids of homologous series. Nippon Kagaku Kaishi 11, 2047–2051 (1973)

    Article  Google Scholar 

  35. K.-D. Chen, Y.-F. Lin, C.-H. Tu, Densities, viscosities, refractive indexes, and surface tensions for mixtures of ethanol, benzyl acetate, and benzyl alcohol. J. Chem. Eng. Data 57(4), 1118–1127 (2012)

    Article  Google Scholar 

  36. N.G. Tsierkezos, Application of the extended langmuir model for the determination of lyophobicity of 1-propanol in acetonitrile. Int. J. Thermophys. 30(3), 910–918 (2009)

    Article  ADS  Google Scholar 

  37. E. Álvarez, A. Correa, J.M. Correa, E. García-Rosello, J.M. Navaza, Surface tensions of three amyl alcohol+ ethanol binary mixtures from (293.15 to 323.15) K. J. Chem. Eng. Data 56(11), 4235–4238 (2011)

    Article  Google Scholar 

  38. H. Yue, Z. Liu, Surface tension of binary mixtures of 2,2,4-trimethylpentane + 1-alkanols from 298.15 to 323.15 K. J. Chem. Eng.Data 61(3), 1270–1279 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our acknowledgment for financial assistance from the “Ministère de l’Enseignement Supérieur et de la Recherche Scientifique de la Tunisie” and Diputación General de Aragón and Fondo Social Europeo “Construyendo Europa desde Aragón” (E31_20R).

Funding

“Ministère de l’Enseignement Supérieur et de la Recherche Scientifique de la Tunisie” and Diputación General de Aragón and Fondo Social Europeo “Construyendo Europa desde Aragón” (E31_20R).

Author information

Authors and Affiliations

Authors

Contributions

RA: Investigation. MH: Investigation and supervision. CL: Investigation, writing, supervision. AH: Surface tension and phase equilibria modeling, writing, supervision.

Corresponding author

Correspondence to Ariel Hernández.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 624 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abidi, R., Hichri, M., Lafuente, C. et al. Surface Tensions for Binary Mixtures of Alkyl Levulinate + Alkanol: Measurement and Modeling. Int J Thermophys 44, 33 (2023). https://doi.org/10.1007/s10765-022-03142-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03142-6

Keywords

Navigation