Skip to main content
Log in

Group Contribution Based Graph Convolution Network: Predicting Vapor–Liquid Equilibrium with COSMO-SAC-ML

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The conductor-like screening model with the segment activity coefficient (COSMO-SAC) model enables us to predict the liquid phase behavior based on quantum chemical calculations when experimental information is unavailable. However, the quantum chemical COSMO calculations require significant computational resources (software, hardware, experience, and time) for successful results. In this work, we suggest machine learning models for replacing COSMO calculations to alleviate the computational burden. The machine learning (ML) models include graph convolutional neural networks. The ML models were constructed based on the molecular level structural information and previous COSMO calculation databases. Additional COSMO calculations were generated to train several missing functional groups, which are not included in the existing databases. The ML prediction abilities were shown by comparison of generated cavity volume and sigma profile with the original COSMO-SAC. The vapor–liquid equilibrium (VLE) prediction results were also compared with the original COSMO-SAC and the UNIQUAC functional-group activity coefficients (UNIFAC) model. It is shown that the suggested ML models can predict VLE with reasonable accuracy comparable with the original COSMO-SAC and UNIFAC. The new ML models can effectively replace the time-consuming COSMO-SAC calculations and experimental data-dependent UNIFAC models.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

\({A}_{i}\) :

Cavity area of component \(i\)2]

\({a}_{eff}\) :

Effective area parameter [Å2]

\({A}_{ES}\) :

Electrostatic interaction parameter A [kcal Å2·mol−1·e−2]

\({B}_{ES}\) :

Electrostatic interaction parameter B [kcal Å4 K2 mol−1·e−2]

\({c}_{hb}\) :

Hydrogen bonding interaction parameter [kcal Å4·mol−1·e−2]

\({c}_{OH}\) :

OH interaction parameter [kcal Å4·mol−1·e−2]

\({c}_{OH-OT}\) :

OH-OT interaction parameter [kcal Å4·mol−1·e−2]

\({c}_{OT}\) :

OT interaction parameter [kcal Å4·mol−1·e−2]

\({\widehat{f}}_{i}\) :

Partial fugacity of component \(i\) [–]

\(N\) :

Number of learned molecules [–], number of total experimental data points [–]

\(n\) :

Number of grids of screening charge [–]

\(P\) :

Pressure [\({\text{kPa}}\)]

\({P}_{i}^{sat}\) :

Saturation pressure of component i [\({\text{kPa}}\)]

\(p\left(\sigma \right)\) :

Sigma profile [–]

\({q}_{0}\) :

Area normalization parameter [Å2]

\({r}_{0}\) :

Volume normalization parameter [Å3]

R2 :

R-squared score [–]

\({V}_{i}\) :

Cavity volume of component \(i\)3]

\({x}_{i}\) :

Liquid mole fraction of component \(i\) [–]

\({y}_{i}\) :

Vapor mole fraction of component \(i\) [–]

\(z\) :

Coordination number [–]

\(\Delta P\) :

Relative root mean error of pressure [%]

\(\Delta W\) :

Exchange energy [kcal Å4·mol−1]

\(\Delta y\) :

Root mean error of vapor mole fraction [–]

\(\Gamma \left(\sigma \right)\) :

Segment activity coefficient [–]

\({\gamma }_{i}\) :

Activity coefficient of component \(i\) [–]

\(\widehat{{\phi }_{i}}\) :

Partial fugacity coefficient of component \(i\) [–]

\(\sigma\) :

Charge density [e Å2]

COSMO:

Conductor-like screening MOdel

COSMO-RS:

Conductor-like screening MOdel with real solvent

COSMO-SAC:

Conductor-like screening MOdel with segment activity coefficient

GC:

Group contribution

GCM:

Group contribution model

GC-GCN:

Group contribution graph convolution neural network

HDNN:

High-dimensional neural network

LLE:

Liquid–liquid equilibrium

LSTM:

Long short-term memory

M-GCN:

Molecular graph convolution neural network

ML:

Machine learning

RMSE:

Root mean square error

RRMSE:

Relative root mean square error

SLE:

Solid–liquid equilibrium

UNIFAC:

UNIQUAC functional-group activity coefficients

VLE:

Vapor–liquid equilibrium

References

  1. A. Klamt, J. Phys. Chem.-US 99, 2224 (1995). https://doi.org/10.1021/j100007a062

    Article  Google Scholar 

  2. S.-T. Lin, S.I. Sandler, Ind. Eng. Chem. Res. 41, 899 (2002)

    Article  Google Scholar 

  3. I.H. Bell, E. Mickoleit, C.M. Hsieh, S.T. Lin, J. Vrabec, C. Breitkopf, A. Jager, J. Chem. Theory Comput. 16, 2635 (2020). https://doi.org/10.1021/acs.jctc.9b01016

    Article  Google Scholar 

  4. R.P. de Soares, L.F. Baladão, P.B. Staudt, Fluid Phase Equilib. 488, 13 (2019). https://doi.org/10.1016/j.fluid.2019.01.015

    Article  Google Scholar 

  5. S.S. Kang, J. Lee, J.W. Kang, Fluid Phase Equilib. (2020). https://doi.org/10.1016/j.fluid.2020.112673

    Article  Google Scholar 

  6. E. Mullins, R. Oldland, Y. Liu, S. Wang, S.I. Sandler, C.-C. Chen, M. Zwolak, K.C. Seavey, Ind. Eng. Chem. Res. 45, 4389 (2006)

    Article  Google Scholar 

  7. A. Klamt, COSMO-RS: From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design (Elsevier, Amsterdam, 2005)

    Google Scholar 

  8. T. Mu, J. Rarey, J. Gmehling, AIChE J. 53, 3231 (2007). https://doi.org/10.1002/aic.11338

    Article  Google Scholar 

  9. T. Mu, J. Rarey, J. Gmehling, AIChE J. 55, 3298 (2009). https://doi.org/10.1002/aic.11933

    Article  Google Scholar 

  10. Q.L. Liu, L. Zhang, K. Tang, L.L. Liu, J. Du, Q.W. Meng, R. Gani, Aiche J. (2021). https://doi.org/10.1002/aic.17110

    Article  Google Scholar 

  11. M. Haghighatlari, J. Hachmann, Curr. Opin. Chem. Eng. 23, 51 (2019). https://doi.org/10.1016/j.coche.2019.02.009

    Article  Google Scholar 

  12. J.-J. Chang, J.-L. Kang, D.S.-H. Wong, C.-H. Chou, H.-H. Hsu, C.-H. Huang, S.-T. Lin, in 29th European Symposium on Computer Aided Process Engineering, (2019), pp. 787–792

  13. J. Marrero, R. Gani, Fluid Phase Equilib. 183, 183 (2001). https://doi.org/10.1016/S0378-3812(01)00431-9

    Article  Google Scholar 

  14. S. Kearnes, K. McCloskey, M. Berndl, V. Pande, P. Riley, J. Comput. Aided Mol. Des. 30, 595 (2016). https://doi.org/10.1007/s10822-016-9938-8

    Article  ADS  Google Scholar 

  15. S.Y. Hwang, J.W. Kang, Int. J. Thermophys. (2022). https://doi.org/10.1007/s10765-022-03060-7

    Article  Google Scholar 

  16. S. Wang, S.I. Sandler, C.C. Chen, Ind. Eng. Chem. Res. 46, 7275 (2007). https://doi.org/10.1021/ie070465z

    Article  Google Scholar 

  17. C.M. Hsieh, S.I. Sandler, S.T. Lin, Fluid Phase Equilib. 297, 90 (2010). https://doi.org/10.1016/j.fluid.2010.06.011

    Article  Google Scholar 

  18. C.M. Hsieh, S.T. Lin, J. Vrabec, Fluid Phase Equilib. 384, 14 (2014). https://doi.org/10.1016/j.fluid.2014.10.019

    Article  Google Scholar 

  19. R.C. Xiong, S.I. Sandler, R.I. Burnett, Ind. Eng. Chem. Res. 53, 8265 (2014). https://doi.org/10.1021/ie404410v

    Article  Google Scholar 

  20. R. Fingerhut, W.L. Chen, A. Schedemann, W. Cordes, J. Rarey, C.M. Hsieh, J. Vrabec, S.T. Lin, Ind. Eng. Chem. Res. 56, 9868 (2017). https://doi.org/10.1021/acs.iecr.7b01360

    Article  Google Scholar 

  21. F. Chollet et al., Keras. (Keras, 2015) https://keras.io/. Accessed 07 Oct 2022

  22. Y.-H. Song, X.-M. Hou, J. Song, Y. Zhang, J. Wang, P.-H. Wei, C.-F. Li, J. Chem. Eng. Data 63, 138 (2017). https://doi.org/10.1021/acs.jced.7b00740

    Article  Google Scholar 

  23. H. Zheng, X. Luo, G. Yin, J. Chen, S. Zhao, J. Chem. Eng. Data 63, 49 (2017). https://doi.org/10.1021/acs.jced.7b00574

    Article  Google Scholar 

  24. D.-C. Wang, C.-L. Wang, Y.-J. Luo, H. Song, X.-P. Liu, J. Chem. Eng. Data (2018). https://doi.org/10.1021/acs.jced.8b00158

    Article  Google Scholar 

  25. X. Man, T. Jiao, Z. Wang, X. Zhang, X. Zhang, J. Chem. Eng. Data 64, 5038 (2019). https://doi.org/10.1021/acs.jced.8b01247

    Article  Google Scholar 

  26. S. Naicker, S.A. Iwarere, P. Naidoo, D. Ramjugernath, J. Chem. Eng. Data 64, 2388 (2019). https://doi.org/10.1021/acs.jced.8b01196

    Article  Google Scholar 

  27. D. Wei, L. Kong, X. Tan, S. Zheng, J. Chem. Eng. Data 64, 736 (2019). https://doi.org/10.1021/acs.jced.8b00966

    Article  Google Scholar 

  28. J. Wu, L. Wang, X. Chen, X. Wei, J. Liang, Z. Tong, J. Chem. Eng. Data 64, 905 (2019). https://doi.org/10.1021/acs.jced.8b00672

    Article  Google Scholar 

  29. J. Xu, S. Li, Z. Zeng, W. Xue, J. Chem. Eng. Data 65, 81 (2019). https://doi.org/10.1021/acs.jced.9b00757

    Article  Google Scholar 

  30. T. Sommer, M. Zapletal, J. Trejbal, J. Chem. Eng. Data 65, 2291 (2020). https://doi.org/10.1021/acs.jced.9b00746

    Article  Google Scholar 

  31. S.M. Jiao, Y. Gao, J. Feng, T. Lei, X.C. Yuan, Opt. Express 28, 3717 (2020). https://doi.org/10.1364/Oe.382319

    Article  ADS  Google Scholar 

  32. M.A. Schulz, B.T.T. Yeo, J.T. Vogelstein, J. Mourao-Miranada, J.N. Kather, K. Kording, B. Richards, D. Bzdok, Nat. Commun. (2020). https://doi.org/10.1038/s41467-020-18037-z

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Research Foundation of Korea (NRF) grants funded by the Korean government (MSIT) [Grant Numbers NRF- 2021R1A5A6002853 and NRF-2019M3E6A1064876]. This work was also supported by Korea Environment Industry & Technology Institute (KEITI) through Technology Development Project for Safety Management of Household Chemical Products Program, funded by Korea Ministry of Environment (MOE) (ARQ202201483001).

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

CREdiT authorship contribution statement. BCR: Conceptualization, Methodology, Investigation, Writing—original draft. SSK: Methodology. SYH: Methodology. JWK: Supervision, Writing—review & editing.

Corresponding authors

Correspondence to Jeong Won Kang or Dongsoo Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (ZIP 34514 kb)

Supplementary file2 (DOCX 14250 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, B.C., Hwang, S.Y., Kang, S.S. et al. Group Contribution Based Graph Convolution Network: Predicting Vapor–Liquid Equilibrium with COSMO-SAC-ML. Int J Thermophys 44, 49 (2023). https://doi.org/10.1007/s10765-022-03141-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03141-7

Keywords

Navigation