Skip to main content
Log in

Modeling and Measurement of Effective Thermal Conductivity of Materials Reinforced with Bars

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This article proposes new analytical dependencies for determining the thermal conductivity of materials reinforced with bars. Thermal conductivity in this case is determined in the direction parallel to the axis of the bars. According to the RVE (also called REV—representative elementary volume) method, a minimal representative volume is selected in the original reinforced material, in which the thermophysical properties of the original material are reproduced. Based on Fourier’s law, analytical dependences are derived to determine the effective thermal conductivity of the reinforced material with bars, as well as a material with cylindrical cavities. The effective thermal conductivity is affected by both the thermal conductivity of original materials and geometric parameters of the reinforcement (bar diameters and the distance between them). As part of the study, numerical simulation of the thermal conductivity process in cement reinforced with polymer bars was carried out using the Ansys software package. Graphical dependences of the effective thermal conductivity of the reinforced material depending on the bar diameters are built. A comparison is made of the effective thermal conductivity obtained using a numerical solution by the finite element method and an analytical solution. The discrepancies between the numerical and analytical methods for determining the effective thermal conductivity do not exceed 2 %. The experimental study also confirms the numerical and analytical models. Thus, in an experimental study of a polymer-reinforced sample, the effective thermal conductivity was \(k_{ef} = 0.344\) W/(m·K) and in the analytical solution—\(k_{ef} = 0.354\) W/(m·K). The discrepancy in this case is 3 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. L. Blok, M. Longana, H. Yu, B. Woods, Addit. Manuf. (2018). https://doi.org/10.1016/j.addma.2018.04.039

  2. B. Brenken, E. Barocio, A. Favaloro, V. Kunc, R.B. Pipes, Addit. Manuf. 21, 1–16 (2018)

    Google Scholar 

  3. S.-S. Yao, F.-L. Jin, K.Y. Rhee, D. Hui, S.-J. Park, Composites B Eng. 142, 241–250 (2018)

    Article  Google Scholar 

  4. M. Caminero, J. Chacón, I. García-Moreno, G. Rodríguez, Composites B Eng. 148, 93–103 (2018)

    Article  Google Scholar 

  5. D. Milosavljevic, M. Zmindak, V. Dekys, A. Radakovic, D. Cukanovic, J. Eng. Math. 129, 1–11 (2021)

    Article  Google Scholar 

  6. B. Haba, F. Benali, M. Jawaid, A.L. Leão, Int. J. Thermophys. 43, 1–35 (2022)

    Article  Google Scholar 

  7. A. Belferrag, A. Kriker, F. Youcef, S. Abboudi, S. Tié Bi, Int. J. Thermophys. 43, 1–16 (2022)

    Article  Google Scholar 

  8. X. Liang, C. Wu, Int. J. Thermophys. 39, 1–19 (2018)

    Article  ADS  Google Scholar 

  9. M. Koru, K. Büyükkaya, M. Kan, Int. J. Thermophys. 43, 1–18 (2022)

    Article  Google Scholar 

  10. W. Abbass, M.I. Khan, S. Mourad, Constr. Build. Mater. 168, 556–569 (2018)

    Article  Google Scholar 

  11. D. Wang, Y. Ju, H. Shen, L. Xu, Constr. Build. Mater. 197, 464–473 (2019)

    Article  Google Scholar 

  12. S. Chu, A. Kwan, Cem. Concr. Compos. 104, 103405 (2019)

    Article  Google Scholar 

  13. Z. Sun, L. Fu, D.-C. Feng, A.R. Vatuloka, Y. Wei, G. Wu, Eng. Struct. 197, 109443 (2019)

    Article  Google Scholar 

  14. X. Ruan, C. Lu, K. Xu, G. Xuan, M. Ni, Compos. Struct. 235, 111772 (2020)

    Article  Google Scholar 

  15. H. Huang, Y. Yuan, W. Zhang, R. Hao, J. Zeng, Constr. Build. Mater. 250, 118857 (2020)

    Article  Google Scholar 

  16. S. Liu, K. Zhu, S. Cui, X. Shen, G. Tan, Energy Build. 177, 385–393 (2018)

    Article  Google Scholar 

  17. D. Kada, A. Koubaa, G. Tabak, S. Migneault, B. Garnier, A. Boudenne, Polym. Compos. 39, 664–670 (2018)

    Article  Google Scholar 

  18. K. Rashid, E.U. Haq, M.S. Kamran, N. Munir, A. Shahid, I. Hanif, Constr. Build. Mater. 221, 190–199 (2019)

    Article  Google Scholar 

  19. K. Liu, L. Lu, F. Wang, W. Liang, Constr. Build. Mater. 148, 465–475 (2017)

    Article  Google Scholar 

  20. S.R. Ahmad, C. Xue, R.J. Young, Mater. Sci. Eng. B 216, 2–9 (2017)

    Article  Google Scholar 

  21. X. Zhao, H. Ru, D. Chen, N. Zhang, B. Liang, Mater. Sci. Eng. B 177, 402–410 (2012)

    Article  Google Scholar 

  22. F. Alam, M. Choosri, T.K. Gupta, K. Varadarajan, D. Choi, S. Kumar, Mater. Sci. Eng. B 241, 82–91 (2019)

    Article  Google Scholar 

  23. M.K. Hassanzadeh-Aghdam, M.J. Mahmoodi, M. Safi, Composites B Eng. 174, 106972 (2019)

    Article  Google Scholar 

  24. D.H. Sung, M. Kim, Y.-B. Park, Composites B Eng. 133, 232–239 (2018)

    Article  Google Scholar 

  25. M.K. Hassanzadeh-Aghdam, M.J. Mahmoodi, Mater. Sci. Eng. B 229, 173–183 (2018)

    Article  Google Scholar 

  26. K. Babu, P. Mohite, C. Upadhyay, Int. J. Solids Struct. 130, 80–104 (2018)

    Article  Google Scholar 

  27. L. Zhang, D. Hu, R. Wang, Y. Zeng, C. Cho, J. Compos. Mater. 53, 1917–1931 (2019)

    Article  ADS  Google Scholar 

  28. P. Ferretti, G.M. Santi, C. Leon-Cardenas, E. Fusari, G. Donnici, L. Frizziero, Polymers 13, 3555 (2021)

    Article  Google Scholar 

  29. K. Breuer, M. Stommel, SN Appl. Sci. 2, 1–13 (2020)

    Article  Google Scholar 

  30. J. Sladek, P. Novak, P. Bishay, V. Sladek, Constr. Build. Mater. 190, 1208–1214 (2018)

    Article  Google Scholar 

  31. J. Wang, X. Li, C. Wang, C. Zhang, H. Fang, Y. Deng, Constr. Build. Mater. 300, 124223 (2021)

    Article  Google Scholar 

  32. M. Hassanzadeh-Aghdam, M. Mahmoodi, J. Jamali, Int. J. Heat Mass Transf. 124, 190–200 (2018)

    Article  Google Scholar 

  33. S. Kundalwal, R.S. Kumar, M. Ray, Int. J. Heat Mass Transf. 72, 440–451 (2014)

    Article  Google Scholar 

  34. Experimental Setup ITP-MG4 “250”, http://www.stroypribor.com/izmeriteli-teploprovodnosti-itp-mg4-100-itp-mg4-250.html

Download references

Funding

The study was supported by a grant from the Russian Science Foundation No. 21-79-00047, https://rscf.ru/en/project/21-79-00047/.

Author information

Authors and Affiliations

Authors

Contributions

AP contributed to main text of the article and numerical and analytical solution. AE contributed to making edits and preparing figures. DB contributed to experimental study. All authors reviewed the manuscript.

Corresponding author

Correspondence to Andrey Popov.

Ethics declarations

Conflict of interest

I declare that the authors have no competing interests as defined by Springer or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Data Availability

Access to the data can be obtained by e-mail request to corresponding author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, A., Eremin, A. & Bragin, D. Modeling and Measurement of Effective Thermal Conductivity of Materials Reinforced with Bars. Int J Thermophys 44, 17 (2023). https://doi.org/10.1007/s10765-022-03137-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03137-3

Keywords

Navigation