Skip to main content
Log in

Numerical Simulation of Internal Factors that Influence the Thermal Conductivity of Rock

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Rock thermophysical properties are the basic parameters that constrain the temperature field, thermal evolution, and thermal regime of the lithosphere. The petrofabric is the internal factor that most directly affects the thermal conductivities of rocks. In this study, we used the finite-element method to simulate the influence of major petrofabric characteristics such as pore size, fracture angle, and composition arrangement on the thermal conductivity. The results show that at the 1 % porosity there is no obvious relationship between pore size and thermal conductivity. However, the contact thermal resistance between grains is different in rocks with different pore sizes or grain sizes. Further, the angle between a fracture and the direction of heat flow has an obvious effect on the thermal conductivity of a rock, and the thermal conductivity decreases as this angle increases. It is thus necessary to pay attention to this angular relationship when modelling the effective thermal conductivity of rock with cracks developed. In addition, the arrangement of components in rocks affects both the thermal conductivity and the response of the thermal conductivity to temperature. We expect the present results to be helpful in understanding quantitatively the influence of these factors on the thermal conductivity of rock and to provide a valuable reference for experimental studies of rock thermal conductivity and strata thermal conductivity modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The source codes are available for downloading at the following link: https://github.com/zhaoweiliu/-Stochastic-geometric-modelling/. Program language: JAVA. Software required COMSOL Multiphysics 5.0 and advanced versions. Program size: 7.13 KB.

Abbreviations

T :

Temperature

k :

Thermal conductivity

q :

Heat flow

References

  1. Z.F. Duan, Z.H. Pang, F.T. Yang, Coal Sci. Technol. 41, 15–17 (2013). https://doi.org/10.13199/j.cnki.cst.2013.08.008

    Article  Google Scholar 

  2. Y.L. Zhang, T. Li, R.T. Mou, C.Z. Wang, F.C. Yuan, J. Qingdao Technol. Univ. 36, 1–6 (2015)

    Google Scholar 

  3. L. Xiao, C.K. Yang, Z.H. Hu, X.Z. Li, M. Li, Rock Soil Mech. 31, 86–91 (2010). https://doi.org/10.16285/j.rsm.2010.s2.006

    Article  Google Scholar 

  4. S.S. Guo, C.Q. Zhu, N.S. Qiu, B.N. Tang, Y. Cui, J.T. Zhang, Y.H. Zhao, Energies 12, 3884 (2019). https://doi.org/10.3390/en12203884

    Article  Google Scholar 

  5. G.L. Wang, J. Gao, B.J. Zhang, Y.F. Xing, W. Zhang, F. Ma, Acta Geol. Sin. 94, 1970–1980 (2020). https://doi.org/10.19762/j.cnki.dizhixuebao.2020235

    Article  Google Scholar 

  6. X.G. Zhao, J. Wang, F. Chen, P.F. Li, L.K. Ma, J.L. Xie, Y.M. Liu, Tectonophysics 683, 124–137 (2016). https://doi.org/10.1016/j.tecto.2016.06.021

    Article  ADS  Google Scholar 

  7. Z. Abdulagatova, I.M. Abdulagatov, V.N. Emirov, Int. J. Rock Mech. Min. Sci. 46, 1055–1071 (2009). https://doi.org/10.1016/j.ijrmms.2009.04.011

    Article  Google Scholar 

  8. S.F. Wang, T. Wu, J. Eng. Thermophys. 37(12), 2626–2630 (2016)

    Google Scholar 

  9. H. Liu, S. Ban, K. Bédard, B. Giroux, Adv. Geo Energy Res. 6, 206–220 (2022). https://doi.org/10.46690/ager.2022.03.04

    Article  Google Scholar 

  10. K. Midttomme, E. Roaldset, Petrol. Geosci. 4, 165–172 (1998). https://doi.org/10.1144/petgeo.4.2.165

    Article  Google Scholar 

  11. X.Q. Du, Fundamentals of Numerical Simulation of Groundwater Flow (China Water Power Press, Beijing, 2014)

    Google Scholar 

  12. C.J. Sun, Z.B. Han, Z. Zhen, Y. Fan, Environ. Eng. (2013). https://doi.org/10.7617/j.issn.1000-8942.2013.05.003

    Article  Google Scholar 

  13. L. Gong, 2-D Finite Element Numerical Simulation of Geothermal Field (Central South University, Changsha, 2014)

    Google Scholar 

  14. J.C. Wu, X.K. Zeng, X.B. Zhu, Fundamentals of Numerical Simulation of Groundwater (China Water Power Press, Beijing, 2017)

    Google Scholar 

  15. C. Chen, C.Q. Zhu, B.N. Tang, T.G. Chen, Prog. Geophys. 35, 2047–2057 (2020). https://doi.org/10.6038/pg2020EE0013

    Article  Google Scholar 

  16. R.W. Zimmerman, J. Petrol. Sci. Eng. 3, 219–227 (1989). https://doi.org/10.1016/0920-4105(89)90019-3

    Article  Google Scholar 

  17. Y. Popov, V. Tertychnyi, R. Romushkevich, D. Korobkov, J. Pohl, Pure Appl. Geophys. 160, 1137–1161 (2003). https://doi.org/10.1007/PL00012565

    Article  ADS  Google Scholar 

  18. U. Seipold, Phys. Earth Planet. Inter. 69, 299–303 (1992). https://doi.org/10.1016/0031-9201(92)90149-P

    Article  ADS  Google Scholar 

  19. I.H. Tavman, Int. Commun. Heat Mass Transf. 23, 169–176 (1996). https://doi.org/10.1016/0735-1933(96)00003-6

    Article  Google Scholar 

  20. M. Luo, J.R. Wood, L.M. Cathles, J. Appl. Geophys. 32, 321–334 (1994). https://doi.org/10.1016/0926-9851(94)90031-0

    Article  ADS  Google Scholar 

  21. C.M. Griffiths, N.R. Brereton, R. Beausillon, D. Castillo, Publications 65, 299–315 (1992). https://doi.org/10.1144/GSL.SP.1992.065.01.23

    Article  Google Scholar 

  22. F.W. Jones, F. Pascal, Geophysics 60, 1038–1050 (1995). https://doi.org/10.1190/1.1443832

    Article  ADS  Google Scholar 

  23. F. Pascal, F.W. Jones, Geophys. J. Int. 118, 623–635 (1994). https://doi.org/10.1111/j.1365-246X.1994.tb03989.x

    Article  ADS  Google Scholar 

  24. A.E. Ramazanova, Bull. Russ. Acad. Sci. Phys. 76, 125–127 (2012). https://doi.org/10.3103/S1062873812010248

    Article  Google Scholar 

  25. W.J. Cho, S. Kwon, J.W. Eng, Geology 107, 167–171 (2009). https://doi.org/10.1016/j.enggeo.2009.05.012

    Article  Google Scholar 

  26. I.M. Abdulagatov, Z.Z. Abdulagatova, S.N. Kallaev, A.G. Bakmaev, P.G. Ranjith, Int. J. Thermophys. 36, 658–691 (2015). https://doi.org/10.1007/s10765-014-1829-4

    Article  ADS  Google Scholar 

  27. M. Koru, K. Büyükkaya, Int. J. Thermophys. 43, 155 (2022). https://doi.org/10.1007/s10765-022-03079-w

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to show our appreciation to Dr. Xiaoning Shen and Ms. Zhengju Zhang from COMSOL Co. Ltd. for their guidance on the software operation.

Funding

The National Key Research and Development Program of China (Grant No. 2021YFA0716003) and the National Natural Science Foundation of China (Grant No. 42172334).

Author information

Authors and Affiliations

Authors

Contributions

CZ: the primary finisher of this paper; CC: coding and COMSOL simulation; XJ: completed part of the data processing work.

Corresponding author

Correspondence to Chuanqing Zhu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TXT 6 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Chen, C. & Jiang, X. Numerical Simulation of Internal Factors that Influence the Thermal Conductivity of Rock. Int J Thermophys 44, 24 (2023). https://doi.org/10.1007/s10765-022-03132-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03132-8

Keywords

Navigation