Skip to main content
Log in

Thermal Conductivity of Liquid Mixtures: Model of the Dependence on Concentration

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A model of the dependence of thermal conductivity of liquid mixtures on their concentration is constructed on the basis of a series connection of the thermal resistances of their components. The equivalent resistance model of the “Filaments” type is found to serve as a valid basis for describing the phenomenon of additional thermal resistance obtained in experiments carried out on mixtures. From the model, it follows that the thermal conductivity coefficient of a mixture is not an additive value. The dependence of the additional thermal resistance on the concentration becomes more pronounced with a greater ratio of thermal conductivities of pure components. Taking into account the effect of increasing thermal resistance due to the scattering of phonons on the inhomogeneities of the system, it was possible to obtain a sufficient agreement with experimental data on thermal conductivity for selected mixtures having various natures, including those with a lower critical solution temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.W. Magee, W.M. Haynes, Int. J. Thermophys. 21, 113 (2000). https://doi.org/10.1023/A:1006660905734

    Article  Google Scholar 

  2. I.M. Abdulagatov, L.A. Akhmedova-Azizova, N.D. Azizov, Fluid Phase Equilib. 376, 1 (2014)

    Article  Google Scholar 

  3. J. Safarov, A. Guluzade, Int. J. Thermophys. 43, 104 (2022). https://doi.org/10.1007/s10765-022-03014-z

    Article  ADS  Google Scholar 

  4. D.V. Antonov, G.V. Kuznetsov, R.M. Fedorenko, P.A. Strizhak, Appl. Therm. Eng. 206, 118107 (2022). https://doi.org/10.1016/j.applthermaleng.2022.118107

    Article  Google Scholar 

  5. D. Beysens, Front Space Technol. 3, 876642 (2022). https://doi.org/10.3389/frspt.2022.876642

    Article  ADS  Google Scholar 

  6. L.A. Akhmedova-Azizova, I.M. Abdulagatov, T.J. Bruno, Energy Fuels 23, 4522 (2009). https://doi.org/10.1021/ef900435b

    Article  Google Scholar 

  7. B. Ruan, Y. Kai, G. Xiaowei, C. Miao, Appl. Therm. Eng. 171, 115032 (2020). https://doi.org/10.1016/j.applthermaleng.2020.115032

    Article  Google Scholar 

  8. K.D. Antoniadis, G.J. Tertsinidou, M.J. Assael et al., Int. J. Thermophys. 37, 78 (2016). https://doi.org/10.1007/s10765-016-2083-8

    Article  ADS  Google Scholar 

  9. S. Pittois, B. Van Roie, C. Glorieux, J. Thoen, J. Chem. Phys. 121, 1866 (2004)

    Article  ADS  Google Scholar 

  10. D.G. Friend, H.M. Roder, Int. J. Thermophys. 8, 13 (1987). https://doi.org/10.1007/BF00503221

    Article  ADS  Google Scholar 

  11. H. Mensah-Brown, W.A. Wakeham, Int. J. Thermophys. 16, 237 (1995). https://doi.org/10.1007/BF01438974

    Article  ADS  Google Scholar 

  12. I.M. Abdulagatov, P.V. Skripov, Russ. J. Phys. Chem. B. 15, 1171 (2021). https://doi.org/10.1134/S1990793121070022

    Article  Google Scholar 

  13. E.P. Sakonidou, H.R. van den Berg, C.A. ten Seldam, J.V. Sengers, Phys. Rev. E 56, 4943 (1997). https://doi.org/10.1103/PhysRevE.56.R4943

    Article  ADS  Google Scholar 

  14. A. Michels, J.V. Sengers, Physica 28, 1238 (1962)

    Article  ADS  Google Scholar 

  15. U. Hammerschmidt, W. Sabuga, Int. J. Thermophys. 21, 1255 (2000). https://doi.org/10.1023/A:1006649209044

    Article  Google Scholar 

  16. S.B. Rutin, D.A. Galkin, P.V. Skripov, Int. J. Heat Mass Transf. 115, 769 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.116

    Article  Google Scholar 

  17. C.A. Nieto de Castro, M.J.V. Lourenço, Energies 13, 99 (2020). https://doi.org/10.3390/en13010099

    Article  Google Scholar 

  18. S.B. Rutin, P.V. Skripov, Int. J. Thermophys. 37, 102 (2016). https://doi.org/10.1007/s10765-016-2108-3

    Article  ADS  Google Scholar 

  19. C.C. Li, AlChE J. 22, 927 (1976). https://doi.org/10.1002/aic.690220520

    Article  Google Scholar 

  20. L.P. Phylippov, S.N. Kravchun, Zh. Fiz. Khim. 56, 2753 (1982)

    Google Scholar 

  21. S.N. Kravchun, Zh. Fiz. Khim. 60, 2176 (1986)

    Google Scholar 

  22. D.V. Volosnikov, I.I. Povolotskiy, P.V. Skripov, Tech. Phys. Lett. 48, 15 (2022). https://doi.org/10.1134/S1063785022010060

    Article  ADS  Google Scholar 

  23. M.J. Assael, K.D. Antoniadis, W.A. Wakeham, Int. J. Thermophys. 31, 1051 (2010)

    Article  ADS  Google Scholar 

  24. R.A. Perkins, H.M. Roder, C.A. Nieto de Castro, J. Res. Natl. Inst. Stan. 96, 247 (1991)

    Article  Google Scholar 

  25. S.E. Quiñones-Cisneros, S. Pollak, K.A.G. Schmidt, J. Chem. Eng. Data 66, 4215 (2021). https://doi.org/10.1021/acs.jced.1c00400

    Article  Google Scholar 

  26. L.P. Phylippov, S.N. Nefedov, S.N. Kravchoon, Int. J. Thermophys. 1, 141 (1980). https://doi.org/10.1007/BF00504516

    Article  ADS  Google Scholar 

  27. T.F. Sun, A.S. Teja, J. Chem. Eng. Data 48, 198 (2003). https://doi.org/10.1021/je025610o

    Article  Google Scholar 

  28. T.F. Sun, A.S. Teja, J. Chem. Eng. Data 48, 1131 (2004). https://doi.org/10.1021/je049960h

    Article  Google Scholar 

  29. M. Zalaf, W.A. Wakeham, Physica 139–140, 105 (1986)

    Google Scholar 

  30. D. Velliadou, K.D. Antoniadis, A.N. Assimopoulou, M.J. Assael, W.A. Wakeham, Int. J. Thermophys. 43, 124 (2022). https://doi.org/10.1007/s10765-022-03049-2

    Article  ADS  Google Scholar 

  31. D.V. Volosnikov, I.I. Povolotskiy, P.V. Skripov, J. Eng. Thermophys 31, 19 (2022). https://doi.org/10.1134/S1810232822010039

    Article  Google Scholar 

  32. M. Werner, A. Baars, F. Werner et al., Int. J. Thermophys. 28, 1161 (2007). https://doi.org/10.1007/s10765-007-0221-z

    Article  ADS  Google Scholar 

  33. M.J. Assael, E. Charitidou, W.A. Wakeham, Int. J. Thermophys. 10, 793 (1989)

    Article  ADS  Google Scholar 

  34. J.D. Pandey, R. Dey, N.K. Soni, P. Chandra, M.K. Yadav, Indian J. Chem. Technol. 14, 638 (2007)

    Google Scholar 

  35. G.N. Dulnev, Y.P. Zarichyak, Thermal conductivity of mixtures and composite materials. (Energy, Leningrad, 1974), Part 7

  36. M.Z. Hossain, M.H. Kassaee, S. Jeter, A.S. Teja, Int. J. Thermophys. 35, 246 (2014)

    Article  ADS  Google Scholar 

  37. A.A. Bondi, AIChE J. 8, 610 (1962). https://doi.org/10.1002/AIC.690080510

    Article  Google Scholar 

  38. P.V. Skripov, Energies 15, 4440 (2022). https://doi.org/10.3390/en15124440

    Article  Google Scholar 

  39. R. Landauer, J. Appl. Phys. 23, 779 (1952)

    Article  ADS  Google Scholar 

  40. D.J. Bergman, Y. Kantor, J. Phys. C 14, 3365 (1952)

    Article  ADS  Google Scholar 

  41. S. Kirkpatrick, Rev. Mod. Phys. 45, 574 (1973)

    Article  ADS  Google Scholar 

  42. J.M. Luck, Phys. Rev. B 43, 3933 (1991)

    Article  ADS  Google Scholar 

  43. P.W. Bridgman, PNAS 9, 341 (1923)

    Article  ADS  Google Scholar 

  44. H. Mensah-Brown, W.A. Wakeham, J. Chem. Eng. Data 55, 4499 (2010). https://doi.org/10.1021/je1007

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (Project No. 19-19-00115-P).

Author information

Authors and Affiliations

Authors

Contributions

AM was involved in conceptualization, methodology, investigation, writing—original draft. PS helped in resources, investigation, writing—review & editing.

Corresponding author

Correspondence to Pavel Skripov.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: An Alternative Way of Calculating the Thermal Conductivity of the Components

Let us derive the thermal conductivity of a mixture from the elementary kinetic theory of phonons. Consider a surface fragment with area S perpendicular to the temperature gradient in the binary mixture. Then, the heat fluxes through this surface from left to right and from right to left can be obtained. The phonons of both components of the mixture contribute to each of the fluxes. In addition, the phonons associated with each component can be reflected from the surface depending on which molecule is on the other side of it.

The heat flux along the x-axis can be written for the one-component case as the difference between fluxes from left to right and from right to left:

$${J_{\text{q}}} = {1 \over 6}n{v_{\text{s}}}S{i \over 2}k\left[ {T\left( {x - \lambda } \right) - T\left( {x + \lambda } \right)} \right] = - {1 \over 6}nv_{\text{{s}}}S{i \over 2}k{{{\text{d}}T} \over {{\text{d}}z}}2\lambda .$$

where i—is the number of degrees of freedom of a particle. It is assumed here that phonons pass through the surface from a distance equal to their free path length. The coefficient 1/6 reflects the fact that phonons can move in 6 independent directions; i is the number of degrees of freedom of the molecule. Bearing in mind the Fourier law for heat flux, the coefficient of thermal conductivity of a homogeneous substance can be written as follows:

$$\kappa = {1 \over 3}n{v_{\text{s}}}{i \over 2}k\lambda = {1 \over 3}\lambda {v_{\text{s}}}\rho c.$$

The same approach can be applied for a two-component environment. For the heat flux, it can be concluded that:

$${J_{\text{q}}} = {1 \over 6}{n_1}{v_{{\text{s1}}}}S{i \over 2}k\left[ {T\left( {x - {\lambda _1}} \right) - T\left( {x + {\lambda _1}} \right)} \right] + {1 \over 6}{n_2}{v_{{\text{s}}2}}S{i \over 2}k\left[ {T\left( {x - {\lambda _2}} \right) - T\left( {x + {\lambda _2}} \right)} \right].$$

Here it is assumed that the heat capacities of the components are the same.

Let us expand these terms in a series, keeping in mind that the mean free path of molecules of each type is different:

$${J_{\text{q}}} = {1 \over 6}{n_1}{v_{{\text{s}}1}}S{i \over 2}k{{{\text{d}}T} \over {{\text{d}}x}}2{\lambda _1} + {1 \over 6}{n_2}{v_{{\text{s}}2}}S{i \over 2}k{{{\text{d}}T} \over {{\text{d}}x}}2{\lambda _2}.$$

As a result, we get:

$${J_{\text{q}}} = - \left( {{1 \over 3}{n_1}{v_{{\text{s}}1}}{i \over 2}k{\text{ }}{\lambda _1} + {1 \over 3}{n_2}{v_{{\text{s}}2}}{i \over 2}k{\text{ }}{\lambda _2}} \right){{{\text{d}}T} \over {{\text{d}}x}}S.$$

The free path length of each type of phonon can be calculated using the formula for reflecting phonons obtained above:

$${\lambda _1} = x{\lambda _{10}} + \left( {1 - x} \right){\lambda _{10}}\left( {1 - \gamma } \right),$$
$${\lambda _2} = \left( {1 - x} \right){\lambda _{20}} + x{\lambda _{20}}\left( {1 - \gamma } \right).$$

here the free path with subscript “0” refers to the pure component. On the other hand,

$${n_1} = nx,\;{n_2} = n\left( {1 - x} \right).$$

So,

$${\kappa _1} = {\kappa _{10}}\left[ {x + \left( {1 - x} \right)\gamma } \right],$$
$${\kappa _2} = {\kappa _{20}}\left[ {\left( {1 - x} \right) + x\gamma } \right].$$

Appendix B: Case of Different Intermolecular Distances in Components

Let us construct a thermal conductivity model for a mixture in the case of having different average intermolecular distances (ai). For the coefficient of thermal conductivity, then it can be written as follows:

$$\kappa = \frac{1}{3}\lambda v_{\text{s}} \rho c\left[ {1 - \frac{{\left( {\frac{{a_{1} }}{{a_{3} }} - 1} \right)^{2} }}{{\left( {\frac{{a_{1} }}{{a_{3} }} + 1} \right)^{2} }}} \right].$$

Then, the thermal conductivity of the first component will depend on the presence of the second component due to scattering on its molecules:

$$\kappa_{1} = \frac{1}{3}v_{\text{s}1} \rho_{1} c_{1} \left[ {x\lambda_{1} + \left( {1 - x} \right)\lambda_{1} \left\{ {1 - \frac{{\left( {\frac{{a_{1} }}{{a_{3} }} - 1} \right)^{2} }}{{\left( {\frac{{a_{1} }}{{a_{3} }} + 1} \right)^{2} }}} \right\}} \right].$$

A similar expression can be written for the second component:

$$\kappa_{2} = \frac{1}{3}v_{\text{s}2} \rho_{2} c_{2} \left[ {\left( {1 - x} \right)\lambda_{2} + x\lambda_{2} \left\{ {1 - \frac{{\left( {\frac{{a_{2} }}{{a_{3} }} - 1} \right)^{2} }}{{\left( {\frac{{a_{2} }}{{a_{3} }} + 1} \right)^{2} }}} \right\}} \right].$$

Let us denote:

\(1 - \frac{{\left( {\frac{{a_{1} }}{{a_{3} }} - 1} \right)^{2} }}{{\left( {\frac{{a_{1} }}{{a_{3} }} + 1} \right)^{2} }} = \gamma_{1}\), \(1 - \frac{{\left( {\frac{{a_{2} }}{{a_{3} }} - 1} \right)^{2} }}{{\left( {\frac{{a_{2} }}{{a_{3} }} + 1} \right)^{2} }} = \gamma_{2} .\)

It is easy to show that this formula has similar properties to one constructed for a mixture having components of various masses. If the average intermolecular distances of pure substances are close, then \(\gamma_{1} = \gamma_{2}\) and the formulas will coincide with those obtained above.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melkikh, A., Skripov, P. Thermal Conductivity of Liquid Mixtures: Model of the Dependence on Concentration. Int J Thermophys 44, 23 (2023). https://doi.org/10.1007/s10765-022-03125-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03125-7

Keywords

Navigation