Skip to main content
Log in

Thermal Study of Ferromagnetic Nanoparticles Coated with Silicon Oxide

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this work, a simple methodology to synthesize Fe3O4@SiO2 nanocomposites, using the precipitation method for Fe3O4 nanoparticles (NPs) and the modified Stöber method to incorporate a SiO2 shell into the NPs has been developed. By incorporating a shell or coating layer of SiO2, the properties of silicon fused to Fe3O4, reduce Fe3O4 toxicity for drugs encapsulation or markers within the SiO2 shell. For such applications, is of special interest to measure the thermal properties such as thermal diffusivity, thermal effusivity and to calculate the thermal conductivity as function of Fe3O4@SiO2 concentration. The thermal wave resonant cavity (TWRC) characterization technique was used to measure the thermal diffusivity and effusivity of the Fe3O4@SiO2 nanofluids. For concentrations of 0.00171 vol % to 0.01718 vol % the values of thermal diffusivity were between 1.3 × 10–7 m2·s−1 and 5.5 × 10–7 m2·s−1. For the thermal effusivity the values were: 1450 ± 39 Ws1/2·m−2·K−1 to 1646 ± 29 Ws1/2·m−2·K−1. From the relationship between the thermal diffusivity and the thermal effusivity, the values for thermal conductivity were between 0.52 W·m−1·K−1 and 1.25 W·m−1·K−1. Therefore, these superparamagnetic systems of Fe3O4@SiO2 are a promising option for applications in biomedicine, as well as in hyperthermia therapies, drug delivery and imaging, among others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Data will be available upon request.

References

  1. L.S. Ganapathe, M.A. Mohamed, R.M. Yunus, D.D. Berhanuddin, Magnetochemistry 6, 68 (2020). https://doi.org/10.3390/magnetochemistry6040068

    Article  Google Scholar 

  2. A. Samanta, B.J. Ravoo, Angew. Chem. 53, 12946 (2017). https://doi.org/10.1002/anie.201405849

    Article  Google Scholar 

  3. L. Xu, M. Kim, K. Kim, Y. Cho, H. Kim, Colloid Surf. A 350, 1 (2009). https://doi.org/10.1016/j.colsurfa.2009.08.022

    Article  Google Scholar 

  4. Y. Ding, S.Z. Shen, H. Sun, K. Sun, F. Liu, Y. Qi, J. Yan, Mater. Sci. Eng. C 48, 487 (2015). https://doi.org/10.1016/j.msec.2014.12.036

    Article  Google Scholar 

  5. Z. Guo, Y. Li, S. Pan, J. Xu, J. Mol. Liq. 206, 272 (2015). https://doi.org/10.1016/j.molliq.2015.02.034

    Article  Google Scholar 

  6. L. Yang, X. Ren, F. Tang, L. Zhang, Biosens. Bioelectron. 25, 4 (2009). https://doi.org/10.1016/j.bios.2009.09.002

    Article  Google Scholar 

  7. L. Shen, B. Li, Y. Qiao, Syst. Mater. 11, 324 (2018). https://doi.org/10.3390/ma11020324

    Article  Google Scholar 

  8. M.A. Moradiya, A. Ladani, J. Ladani, C. Raiyani, J.H. Markna, J. Chem. Sci. Eng. 2, 58 (2019)

    Google Scholar 

  9. L.S. Sundar, M.K. Singh, A.C. Sousa, Int. Commun. Heat Mass Transf. 44, 7 (2013). https://doi.org/10.1016/j.icheatmasstransfer.2013.02.014

    Article  Google Scholar 

  10. D. Gao, M. Bai, C. Hu, J. Lv, C. Wang, X. Zhang, Nanotechnology 31, 495402 (2020). https://doi.org/10.1088/1361-6528/abb15c

    Article  Google Scholar 

  11. M. Afrand, D. Toghraie, N. Sina, Int. Commun. Heat Mass Transf. 75, 262 (2016). https://doi.org/10.1016/j.icheatmasstransfer.2016.04.023

    Article  Google Scholar 

  12. S. Liu, B. Yu, S. Wang, Y. Shen, H. Cong, Adv. Colloid Interface 281, 102165 (2020). https://doi.org/10.1016/j.cis.2020.102165

    Article  Google Scholar 

  13. D. Barai, S. Parbat, B. Bhanvase, E3S Web Conf. 321, 01003 (2021). https://doi.org/10.1051/e3sconf/202132101003

    Article  Google Scholar 

  14. T. Zhang, L. Lin, X. Zhang, H. Liu, X. Yan, J. Qiu, K.L. Yeung, Mater. Lett. 148, 17 (2015). https://doi.org/10.1016/j.matlet.2015.02.077

    Article  Google Scholar 

  15. M. Sonmez, M. Georgescu, L. Alexandrescu, D. Gurau, A. Ficai, D. Ficai, E. Andronescu, Curr. Pharm. Des. 21, 5324 (2015). https://doi.org/10.2174/1381612821666150917094031

    Article  Google Scholar 

  16. S.S. Alterary, A. AlKhamees, Green Process. Synth. 10, 384 (2021). https://doi.org/10.1515/gps-2021-0031

    Article  Google Scholar 

  17. H. Holland, M. Yamaura, PTECH. International Atin-American Conference on Powder Technology 7, 9 (2009).

  18. J.A. Fuentes-García, A.I. Diaz-Cano, A. Guillen-Cervantes, J. Santoyo-Salazar, Sci. Rep. 8, 5096 (2018). https://doi.org/10.1038/s41598-018-23460-w

    Article  ADS  Google Scholar 

  19. J.A. Balderas-López, A. Mandelis, J.A. Garcia, Rev. Sci. Instrum. 71, 2933 (2000). https://doi.org/10.1063/1.1150713

    Article  ADS  Google Scholar 

  20. G. Lara-Hernández, E. Suaste-Gómez, A. Cruz-Orea, J.G. Mendoza-Alvarez, F. Sánchez-Sinencio, J.P. Varcárcel, A. García-Quiroz, Int. J. Thermophys. 34, 962 (2013). https://doi.org/10.1007/s10765-013-1419-x

    Article  ADS  Google Scholar 

  21. J. Caerels, C. Glorieux, J. Thoen, Rev. Sci. Instrum. 69, 2452 (1998). https://doi.org/10.1063/1.1148973

    Article  ADS  Google Scholar 

  22. J.A. Balderas-López, A. Mandelis, Int. J. Thermophys. 23, 605 (2002). https://doi.org/10.1023/A:1015418218392

    Article  Google Scholar 

  23. J. Balderas-López, M. Jaime-Fonseca, J. Diaz-Reyes, Y. Gómez-Gómez, M. Bautista-Ramírez, A. Diosdado, G. Gálvez-Coyt, Braz. J. Phys. 46, 105 (2015). https://doi.org/10.1007/s13538-015-0391-2

    Article  ADS  Google Scholar 

  24. W. Lu, Y. Shen, A. Xie, W. Zhang, J. Magn. Magn. Mater. 322, 13 (2010). https://doi.org/10.1016/j.jmmm.2009.12.035

    Article  Google Scholar 

  25. A. Yusoff, M.N. Salimi, M.F. Jamlos, AIP Conf. Proc. 1835, 020010 (2017). https://doi.org/10.1063/1.4981832

    Article  Google Scholar 

  26. N. Rajkumar, D. Umamahaeswari, K. Ramachandran, Int. J. Nanosci. 9, 243 (2010). https://doi.org/10.1142/S0219581X10006685

    Article  Google Scholar 

  27. L. Nalbandian, E. Patrikiadou, V. Zaspalis, A. Patrikidou, E. Hatzidaki, C. Papandreou, Curr. Nanosci. 12, 455 (2015). https://doi.org/10.2174/1573413712666151210230002

    Article  ADS  Google Scholar 

  28. J.A. Fuentes-García, A.C. Alavarse, A.C. Moreno-Maldonado, A. Toro-Córdova, M.R. Ibarra, G. Fabián-Goya, ACS Omega 5, 41 (2020). https://doi.org/10.1021/acsomega.0c02212

    Article  Google Scholar 

  29. W.F. Elmobarak, F. Almomani, Environ. Res. 202, 111645 (2021). https://doi.org/10.1016/j.envres.2021.111645

    Article  Google Scholar 

  30. H. Zheng, L. Zhou, Z. Liu, Z. Le, J. Ouyang, G. Huang, H. Shehzad, Micropor. Mesopor. Mater. 279, 038 (2019). https://doi.org/10.1016/j.micromeso.2018.12.038

    Article  Google Scholar 

  31. A. Nikmah, A. Taufiq, A. Hidayat, IOP Conf. Ser. Earth Environ. 276, 012046 (2019). https://doi.org/10.1088/1755-1315/276/1/012046

    Article  Google Scholar 

  32. F. Horia, K. Easawi, R. Khalil, S. Abdallah, M. El-Mansy, S. Negm, Mater. Sci. Eng. 956, 012016 (2020). https://doi.org/10.1088/1757-899X/956/1/012016

    Article  Google Scholar 

  33. R.M. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2nd edn. (Wiley, Berlin, 2003)

    Book  Google Scholar 

  34. Y. Wei, B. Han, X. Hu, Y. Lin, X. Wang, X. Deng, Procedia Eng. 27, 632 (2012). https://doi.org/10.1016/j.proeng.2011.12.498

    Article  Google Scholar 

  35. H. Iida, K. Takayanagi, T. Nakanishi, T. Osaka, J. Colloid Interface Sci. 314, 1 (2007). https://doi.org/10.1016/j.jcis.2007.05.047

    Article  Google Scholar 

  36. J. Chen, F. Wang, K. Huang, Y. Liu, S. Liu, J. Alloys Compd. 475, 1 (2009). https://doi.org/10.1016/j.jallcom.2008.08.064

    Article  Google Scholar 

  37. S.H. Chaki, T.J. Malek, M.D. Chaudhary, J.P. Tailor, M.P. Deshpande, Adv. Nat. Sci. Nanosci. 6, 035009 (2015). https://doi.org/10.1088/2043-6262/6/3/035009

    Article  Google Scholar 

  38. A. Matvienko, A. Mandelis, Rev. Sci. Inst. 76, 104901 (2005). https://doi.org/10.1063/1.2074627

    Article  ADS  Google Scholar 

  39. M.L. Huber, R.A. Perkins, D.G. Friend, J.V. Sengers, M.J. Assael, I.N. Metaxa, K. Miyagawa, R. Hellmann, E. Vogel, J. Phys. Chem. Ref. Data 41, 033102 (2012). https://doi.org/10.1063/1.4738955

    Article  ADS  Google Scholar 

  40. S.M. Shibli, A.L.L. Dantas, A. Bee, Braz. J. Phys. 31, 3 (2001). https://doi.org/10.1590/S0103-97332001000300012

    Article  Google Scholar 

  41. L.S. Sundar, M.K. Singh, A.C. Sousa, Int. Commun. Heat Mass Transf. 49, 17 (2013). https://doi.org/10.1016/j.icheatmasstransfer.2013.08.026

    Article  Google Scholar 

  42. H.E. Patel, T. Sundararajan, S.K. Das, J. Nanopart. Res. 12, 1015 (2010). https://doi.org/10.1007/s11051-009-9658-2

    Article  ADS  Google Scholar 

  43. S. Murshed, K. Leong, C. Yang, C. Int, J. Therm. Sci. 47, 560 (2008). https://doi.org/10.1016/j.ijthermalsci.2007.05.004

    Article  Google Scholar 

  44. V.M. Lenart, N.G.C. Astrath, R.F. Turchiello, G.F. Goya, S.L. Gómez, J. Appl. Phys. 123, 085107 (2018). https://doi.org/10.1063/1.5017025

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank CONACYT, COFAA-IPN, EDI for their support and to Eng. Marcela Guerrero from CINVESTAV for SAXS measurements.

Funding

No funding was received for this research.

Author information

Authors and Affiliations

Authors

Contributions

UOG-V: Methodology, Investigation, Data Curation. JLJ-P: Conceptualization, Supervision, Methodology, Investigation, Writing-original draft. ZNC-P: Methodology, Writing-review & editing. GL-G: Methodology. RG-F: Methodology. JLL-S: Methodology.

Corresponding author

Correspondence to U. O. García-Vidal.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests for the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Vidal, U.O., Jiménez-Pérez, J.L., Correa-Pacheco, Z.N. et al. Thermal Study of Ferromagnetic Nanoparticles Coated with Silicon Oxide. Int J Thermophys 44, 18 (2023). https://doi.org/10.1007/s10765-022-03121-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03121-x

Keywords

Navigation