Skip to main content
Log in

Measurements of the Density and Viscosity of Heavy Oil and Water-in-Oil Emulsions Over a Wide Temperature Range

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Density and dynamic viscosity of extra viscous heavy crude oil and water-in-oil (W/O) suspensions based on Ashalchinskaya (Tatarstan, Russian Federation) oil have been measured as a function of temperature and concentration of water at atmospheric pressure. The measurements were made at temperatures from (293 to 463) for density and from (293 to 367) K for viscosity with various concentrations of water (from 0 % to 30 % volume fraction). Measurements were made using modified hydrostatic weighing for density and falling body techniques for viscosity. The combined expanded uncertainty of the density, viscosity, pressure, and temperature measurements at 0.95 confidence level with a coverage factor of k = 2 is estimated to be \(U\left( \rho \right)\) = 0.16 % and \(U\left( \eta \right)\) = 1.0 %, \(U\left( P \right)\) = 1.0 %, and \(U\left( T \right)\) = 0.02 K, respectively. The reliability and accuracy of the new experimental method and correct operation of the modified experimental apparatus was confirmed with measurements using different methods (pycnometric, capillary flow, commercial standard instruments, Brookfield rotational viscometer). The effect of temperature and concentration of water on the measured values of density and viscosity of W/O suspensions were studied. Using crude dry oil, the effective viscosities of several synthetic W/O emulsions are measured at atmospheric pressure using a commercial standard instrument, Brookfield rotational viscometer and falling body technique for different shear rates, temperatures and volume fractions of the dispersed phase. The various correlation equations for describing viscosity as a function of temperature and dispersed phase volume fraction is developed. A number of factors such as water content, shear rate, shear stress, and temperature and their effects on the density and dynamic viscosity of dry crude oil and W/O emulsions were assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S.W. Hasana, M.T. Ghannam, N. Esmail, Heavy crude oil viscosity reduction and rheology for pipeline transportation. Fuel 89, 1095–1100 (2010)

    Article  Google Scholar 

  2. Z.J. Chen, Heavy oils, part II. SIAM News 39, 1–4 (2006)

    Google Scholar 

  3. M.Z. Hasanv, M.A. Ahmadi, R.M. Behbahani, Solving asphaltene precipitation issue in vertical wells via redesigning of production facilities. Petroleum 1, 139–145 (2015)

    Article  Google Scholar 

  4. M.H. Badizad, A.R. Zanganeh, A.H.S.D. Dehaghani, Simulation and assessment of surfactant injection in fractured reservoirs: a sensitivity analysis of some uncertain parameters. IJOGST 5, 13–26 (2016)

    Google Scholar 

  5. M. Mohammadpoor, F. Torabi, Extensive experimental investigation of the effect of drainage height and solvent type on the stabilized drainage rate in vapour extraction (VAPEX) process. Petroleum 1, 187–199 (2015)

    Article  Google Scholar 

  6. L. Zhang, B. Youshu, L. Juyuan, L. Zheng, Z. Rifang, J. Zhang, Movability of lacustrine shale oil: a case study of dongying sag, Jiyang depression, Bohai Bay basin. Pet. Explor. Dev. 41, 703–711 (2014)

    Article  Google Scholar 

  7. W. Wei, W. Pengyu, K. Li, D. Jimiao, W. Kunyi, G. Jing, Prediction of the apparent viscosity of non-Newtonian water-in-crude oil emulsions. Pet. Explor. Dev. 40, 130–133 (2013)

    Article  Google Scholar 

  8. J.M. Al-Besharah, O.A. Salman, S.A. Akashah, Viscosity of crude oil blends. Ind. Eng. Chem. Res. 26, 2445–2449 (1987)

    Article  Google Scholar 

  9. J.G. Speight, Petroleum Chemistry and Refining (Taylor and Francis, Philadelphia, 1998)

    Google Scholar 

  10. G. Nunez, M. Briceno, C. Mata, H. Rivas, D. Joseph, Flow characteristic concentrated emulsions of very viscous oil in water systems. J. Rheol. 40, 405–423 (1996)

    Article  ADS  Google Scholar 

  11. S.K. Pedersen, A.A. Fredenslund, P.L. Christensen, P. Thomasen, Viscosity of crude oils. Chem. Eng. Sci. 39, 1011–1016 (1984)

    Article  Google Scholar 

  12. D.H. Fruman, J. Briant, Investigation of the rheological characteristics of heavy crude oil-in-water emulsions. in Int Conf Phys Model Multi-Phase Flow (Coventry, 1983)

  13. M.M. Schumacher, Enhanced Recovery of Residual and Heavy Oils (Noyes Press, Park Ridge, 1980)

    Google Scholar 

  14. C. Chang, Q.D. Nguyen, H.P. Ronningsen, Isothermal start-up of pipeline transporting waxy crude oil. J. Non-Newt. Fluid Mech. 87, 127–154 (1999)

    Article  MATH  Google Scholar 

  15. D. Langevin, S. Poteau, I. Hénaut, J.F. Argillier, Cride oil emulsion properties and their applications to heavy oil transportation. Oil Gas Sci. Technol. 59, 511–521 (2004)

    Article  Google Scholar 

  16. N.N. Zaki, T. Butz, D. Kessel, Rheology, particle size distribution, and asphaltene deposition of viscous asphaltic crude oil-in-water emulsions for pipeline transportation. Petrol. Sci. Technol. 19, 425–435 (2001)

    Article  Google Scholar 

  17. A. Saniere, I. Henaut, J. Argillier, Pipeline transportation of heavy oils, astrategic, economic and technological challenge. Oil Gas Sci. Technol. 59, 455–466 (2004)

    Article  Google Scholar 

  18. R. Martínez-Palou, M. de Lourdes Mosqueira, B. Zapata-Rendón, E. Mar-Juárez, C. Bernal-Huicochea, J. de la Cruz Clavel-López, J. Aburto, Transportation of heavy and extra-heavy crude oil by pipeline: a review. J. Pet. Sci. Eng. 75, 274–282 (2011)

    Article  Google Scholar 

  19. R.G. Santos, W. Loh, A.C. Bannwart, O.V. Trevisan, An overview of heavy oil properties and its recovery and transportation methods. Braz. J. Chem. Eng. 31, 571–590 (2014)

    Article  Google Scholar 

  20. I. Henaut, J. Argillier, C. Pierre, M. Moan. Thermal flow properties of heavy oils. in Offshore Technology Conference, Offshore Technology Conference (2003)

  21. J. Lohrenz, B.G. Bray, C.R. Clark, Calculating viscosity of reservoir fluids from their composition. J. Pet. Technol. 16, 1170–1176 (1964)

    Article  Google Scholar 

  22. A. Shah, R. Fishwick, J. Wood, G. Leeke, S. Rigby, M. Greaves, A review of novel techniques for heavy oil and bitumen extraction and upgrading. Energy Environ. Sci. 3, 700–714 (2010)

    Article  Google Scholar 

  23. W. R. Shu, K. J. Hartman, Oil and Gas Journal, SPE Paper 79-30-10, Aug., vol. 23 (1982), pp. 51–54

  24. O. Alomair, A. Elsharkawy, H. Alkandari, A viscosity prediction model for Kuwaiti heavy crude oils at elevated temperatures. J. Petrol. Sci. Eng. 120, 102–110 (2014)

    Article  Google Scholar 

  25. W.R. Shu, K.J. Hartman, Thermal recovery method for viscous oil. United States Patent US4598770, July 8 (1986)

  26. D.M. Snow, A. Connell. Method for enhanced recovery of viscous oil deposits. United States Patent US5826655, October 27 (1998)

  27. G.G. McClaflin, H.A. Bourne, D.L. Whitfill, Method for producing heavy, viscous crude oil. United States Patent US4605069, August 21 (1984)

  28. J. Adams, C. Jiang, B. Bennett, H. Huang, T. Oldenburg, K. Noke, L.R. Snowdon, I. Gates, S.R. Larter, in Viscosity Determination of Heavy Oil and Bitumen. World Heavy Oil Conference (WHOC), Paper-443 (Edmonton, 2008)

  29. M.T. Ghannam, S.W. Hasan, B. Abu-Jdayil, N. Esmail, Rheological properties of heavy & light crude oil mixtures for improving flow ability. J. Pet. Sci. Eng. 81, 122–128 (2012)

    Article  Google Scholar 

  30. F. Kartoatmodjo, Z. Schmidt, Large data bank improves crude physical property correlation. Oil Gas J. 4, 51–55 (1994)

    Google Scholar 

  31. H.D. Beggs, J.R. Robinson, Estimating the viscosity of crude oil systems. J. Pet. Technol. 27, 1140–1141 (1975)

    Article  Google Scholar 

  32. J.S. Lim, S.F. Wong, M.C. Law, Y. Samyudia, S.S. Dol, A review on the effects of emulsions on flow behaviors and common factors affecting the stability of emulsions. J. Appl. Sci. 15, 167–172 (2015)

    Article  ADS  Google Scholar 

  33. M.C.K. de Oliveira, L.R.O. Miranda, A.B.M. de Carvalho, D.F.S. Miranda, Viscosity of water-in-oil emulsions from different API gravity Brazilian crude-oils. Energy Fuels 32, 2749–2759 (2018)

    Article  Google Scholar 

  34. S.F. Wong, M.C. Law, Y. Samyudia, S.S. Dol, Rheology study of water-in-crude oil emulsions. Chem. Eng. Trans. 45, 1411–1416 (2015)

    Google Scholar 

  35. S.F. Wong, S.S. Dol, S. Wee, H.B. Chua, Miri light crude water-in-oil emulsions characterization—rheological behavior, stability and amount of emulsions formed. J. Pet. Sci. Eng. 165, 58–66 (2018)

    Article  Google Scholar 

  36. A.A. Umara, I.B.M. Saaid, A.A. Sulaimon, Rheological and stability study of water-in-crude oil emulsions. AIP Conf. Proc. 1774, 040004 (2016)

    Article  Google Scholar 

  37. D.S. Kolotova, Y.A. Kuchina, L.A. Petrova, N.G. Voronko, S.R. Derkach, Rheology of water-in-crude oil emulsions: influence of concentration and temperature. Colloids Interfaces 2, 64–76 (2018)

    Article  Google Scholar 

  38. R. Pal, Novel viscosity equations for emulsions of two immiscible liquids. J. Rheol. 45, 509–515 (2001)

    Article  ADS  Google Scholar 

  39. M.A. Farah, R.C. Oliveira, J.N. Caldas, K. Rajagopal, Viscosity of water-in-oil emulsions: variation with temperature and water volume fraction. J. Pet. Sci. Eng. 48, 169–184 (2005)

    Article  Google Scholar 

  40. M. Benayoune, L. Kbezzar, M. Ai-Rumby, Viscosity of water in oil emulsions. Pet. Sci. Tech. 16, 767–784 (1998)

    Article  Google Scholar 

  41. R. Pal, Rheology of emulsions containing polymeric liquids, in Encyclopedia of Emulsion Technology. ed. by P. Becher (Marcel Dekker, New York, 1996), pp.93–263

    Google Scholar 

  42. B.E. Wyslouzil, M.A. Kessick, J.H. Masliyah, Pipeline flow behavior of heavy crude oil emulsions. Can. J. Chem. Eng. 65, 353–360 (1987)

    Article  Google Scholar 

  43. M. Fingas, B. Fieldhouse, Studies of formation process of water-in-oil emulsions. Mar. Pollut. Bull. 47, 369–396 (2003)

    Article  Google Scholar 

  44. R.A. Mohammed, A.I. Bailey, P.F. Luckham, S.E. Taylor, Dewatering of crude oil emulsions.1. Rheological behaviors of crude oil–water interface. Colloids Surf. 80, 223–235 (1993)

    Article  Google Scholar 

  45. S.F. Wong, J.S. Lim, S.S. Dol, Crude oil emulsion: a review on formation, classification and stability of water-in-oil emulsions. J. Pet. Sci. Eng. 135, 498–504 (2015)

    Article  Google Scholar 

  46. A.A. Umar, I.B.M. Saaid, A.A. Sulaimon, R.B.M. Pilus, A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids. J. Pet. Sci. Eng. 165, 673–691 (2018)

    Article  Google Scholar 

  47. M.E. Abdel-Raouf, Factors Affecting the Stability of Crude Oil Emulsions in Crude Oil in Emulsions—Composition Stability and Characterization (InTech, London, 2012)

    Book  Google Scholar 

  48. J. Zhang, D. Tian, M. Lin, Z. Yang, Z. Dong, Effect of resins, waxes and asphaltenes on water-oil interfacial properties and emulsion stability. Colloids Surf. A Physico-Chem. Eng. Aspects 507, 1–6 (2016)

    Article  Google Scholar 

  49. T.F. Trados, Emulsion Formation and Stability (Wiley, Berlin, 2013)

    Google Scholar 

  50. X. Yin, W. Kang, Y. Zhao, J. Liu, H. Yang, C. Dai, B. Sarsenbekuly, S. Aidarova, L. Yang, H. Yuan, Study on the indigenous stabilization mechanism of light crude oil emulsions based on an in situ solvent-dissolution visualization method. Colloids Surf. A Physico-Chem. Eng. Aspects 530, 155–163 (2017)

    Article  Google Scholar 

  51. D. Subramanian, N. May, A. Firoozabadi, Functional molecules and the stability of water-in-crude oil emulsions. Energy Fuels 31, 8967–8977 (2017)

    Article  Google Scholar 

  52. M.F. Ali, M.H. Alqam, The role of asphaltenes, resins and other solids in the stabilization of water in oil emulsions and its effects on oil production in Saudi oil fields. Fuel 79, 1309–1316 (2000)

    Article  Google Scholar 

  53. T.S.T. Ariffin, E. Yahya, H. Husin, The rheology of light crude oil and water-in-oil-emulsion. Procedia Eng. 148, 1149–1155 (2016)

    Article  Google Scholar 

  54. N.M. Zadymova, Z.N. Skvortsova, V.Y. Traskine, F.A. Kulikov-Kostyushko, V.G. Kulichikhin, A.Y. Malkin, Rheological properties of heavy oil emulsions with different morphologies. J. Pet. Sci. Eng. 149, 522–530 (2017)

    Article  Google Scholar 

  55. S. Keleşoǧlu, A.B. Ponce, G.H. Sørland, S. Simon, K. Paso, J. Sjöblom, Rheological properties of highly concentrated dense packed layer emulsions (w/o) stabilized by asphaltenes. J. Pet. Sci. Eng. 126, 1–10 (2015)

    Article  Google Scholar 

  56. P.V. Hemmingsen, A. Silset, A. Hannisdal, J. Sjцblom, Emulsions of heavy crude oils. I: influence of viscosity, temperature, and dilution. J. Dispers. Sci. Technol. 26, 615–627 (2005)

    Article  Google Scholar 

  57. I.M. Krieger, T.J. Dougherty, A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans. Soc. Rheol. 3, 137–152 (1959)

    Article  MATH  Google Scholar 

  58. H.P. Ronningsen, Correlations for predicting viscosity of w/o emulsions based on North Sea crude oils. in Proceeding of SPE Int Symp, Oil Field Chem. SPE (1995).

  59. M. Moradi, V. Alvarado, S. Huzurbaz, Effect of salinity on water-in-crude oil emulsion: evaluation through drop-size distribution proxy. Energy Fuels 25, 260–268 (2011)

    Article  Google Scholar 

  60. F. Zabel, D.H.S. Law, S. Taylor, J. Zuo, Impact of uncertainty of heavy oil fluid property measurements, Paper SPE 134000. in Proceeding of 9th Canadian Int. Pet. Conf. Calgary, Alberta, Canada, June 17–19 (2008).

  61. V.R. Puttagunta, B. Singh, E. Cooper, A generalized correlation for Alberta heavy oils and bitumens. in Proceeding of 4th UNITAR/UNDP Conf Heavy Crudes and Tar Sands, Vol. 2 (1988), pp. 657–659

  62. V.R. Puttagunta, A. Miadonyea, B. Singh, Simple concept predicts viscosity of heavy oil and bitumen. Oil Gas J. 91, 71–73 (1993)

    Google Scholar 

  63. M. Sattarina, H. Modarresi, M. Bayata, M. Teymori, New viscosity correlations for dead crude oils. Pet. Coal 49, 33–39 (2007)

    Google Scholar 

  64. A. Naseri, M. Nikazar, S.A.M. Dehghani, A correlation approach for prediction of crude oil viscosities. J. Pet. Sci. Eng. 47, 163–174 (2005)

    Article  Google Scholar 

  65. J.G. Speight, The Chemistry and Technology of Petroleum (Marcel Dekker, New York, 1999)

    Book  Google Scholar 

  66. H. Sun, X. Lei, B. Shen, H. Zhang, J. Liu, D. Wu, G. Li, Rheological properties and viscosity reduction of South China Sea crude oil. J. Energy Chem. 27, 1198–1207 (2018)

    Article  Google Scholar 

  67. A. Firoozabadi, Thermodynamics of Hydrocarbon Reservoirs (McGraw-Hill, New York, 1999)

    Google Scholar 

  68. J.X. Wang, J.S. Buckley, Asphaltene stability in crude oil and aromatic solvents—the influence of oil composition. Energy Fuels 17, 1445–1451 (2003)

    Article  Google Scholar 

  69. K.L. Gawrys, G.A. Blankenship, P.K. Kilpatrick, On the distribution of chemical properties and aggregation of solubility fractions in asphaltenes. Energy Fuels 20, 705–714 (2006)

    Article  Google Scholar 

  70. T.S.T. Ariffin, E. Yahya, H. Husin, The rheology of light crude oil and water-in-oil-emulsion. Proc. Eng. 148, 1149–1155 (2016)

    Article  Google Scholar 

  71. Russian Standard ГOCT P 51858-2002. Crude Oil. Specifications. Analysing Method (2002).

  72. S.M. Petrov, D.A. Khalikov, Y.I. Abdelsalam, R.R. Zakieva, G.P. Kayukova, N.Y. Bashkirtseva, Potential of the high viscous Ashalchinskaya oil as a raw material for oil processing. Bull. Kazan Tech. Univ. 16, 261–265 (2013)

    Google Scholar 

  73. R.A. Efremov, AYu. Kopylov, R.A. Abdurakhmanov, A.M. Mazgarov, O.A. Saitova, Rheological characteristics of the mixtures of carboxylic and high-viscous bituminous oils of Tatarstan Republic. Bull. Kazan Tech. Univ. 16, 205–208 (2013)

    Google Scholar 

  74. I.I. Gussamov, S.M. Petrov, D.A. Ibragimova, G.P. Kayukova, N.Y. Bashkirtseva, Components and hydrocarbon composition bituminous oils of Ashalchinskaya oil field. Bull. Kazan Tech. Univ. 17, 207–211 (2014)

    Google Scholar 

  75. I.I. Gussamov, S.M. Petrov, D.A. Ibragimova, G.P. Kayukova, N.Y. Bashkirtseva, Structural group composition of high-viscous oil from Ashalchinskaya oil field. Bull. Kazan Tech. Univ. 17, 248–251 (2014)

    Google Scholar 

  76. R.A. Abdurakhmanov, AYu. Kapylov, I.I. Salikhov, I.R. Safina, L.Y. Mosunova, Extraction deasphaltin gas a method of improving oft the high-viscous oil properties. Bull. Kazan Tech. Univ. 17, 190–194 (2014)

    Google Scholar 

  77. Y.I. Abdelsalam, I.I. Gussamov, S.M. Petrov, N.Y. Bashkirtseva, Rheological properties changes of high-viscous oil and the effect of various catalytic systems. Bull. Kazan Tech. Univ. 17, 170–172 (2014)

    Google Scholar 

  78. E.I. Cherkasova, I.I. Safiullin, Some features of the high-viscous oil production. Bull. Kazan Tech. Univ. 18, 105–108 (2015)

    Google Scholar 

  79. S.M. Petrov, A.I. Lakhova, Aquathermolysis of heavy oil at presence of super critical water. Bull. Kazan Tech. Univ. 18, 58–59 (2015)

    Google Scholar 

  80. S.M. Petrov, A.I. Lakhova, Effect of carbon at rock and kaolin clay on the composition and rheological properties of heavy oil under steam-thermal impact. Bull. Kazan Tech. Univ. 18, 63–65 (2015)

    Google Scholar 

  81. R.S. Yarullin, S.E. Uglovskiy, M.Z. Zarifyanova, S.D. Vafina, Intensification of the Ashalchinskaya natural bitumen recycling process using pulse-wave reactor, Yarus. Bull. Kazan Tech. Univ. 18, 50–53 (2015)

    Google Scholar 

  82. E.A. Galiullin, R.Z. Fakhrutdinov, R. Dzhimasbe, Study of the steam-thermal process of Ashalchinskaya heavy oil. Bull. Kazan Tech. Univ. 19, 44–46 (2016)

    Google Scholar 

  83. S.M. Petrov, D.A. Ibragimova, A.N. Petrova, I.A. Ivanova, A.A. Mukhamedzyanova, R.K. Ibragimov, D.A. Baranov, Mineral oils from Tatarstan heavy oil. Bull. Kazan Tech. Univ. 19, 50–53 (2016)

    Google Scholar 

  84. S.O. Ilyin, M.P. Arinina, M. Polyakova, V.G. Kulichikhin, A.Y. Malkin, Rheological comparison of light and heavy crude oils. Fuel 186, 157–167 (2016)

    Article  Google Scholar 

  85. A.A. Akhmadiyarov, A.A. Petrov, A.A. Samatov, I.G. Rakipov, M.A. Varfolomeev, V.I. Garifullina, A.N. Grachev, Heat combustion addetivity and viscosity of oil fractions from Ashalchinskaya oil field. Bull. Kazan Tech. Univ. 20, 40–43 (2017)

    Google Scholar 

  86. E.A. Galiullin, R.Z. Fakhrutdinov, Study of the effect of group-composition on quality indicators of not oxidized bitumen derived from Ashalchinskaya extra-viscous oil. Bull. Kazan Tech. Univ. 20, 31–36 (2017)

    Google Scholar 

  87. V.F. Khairutdinov. Thermodynamic bases and technological patterns of the dispersion, extraction and impregnation processes using supercritical fluids and their applications in polymer chemistry, pharmaceuticals and oil chemistry. PhD Thesis, Kazan Power Engineering Institute, Kazan, 2019

  88. D. Sagdeev, C. Isyanov, I. Gabitov, V. Khairutdinov, M. Farakhov, F. Gumerov, K. Kharlampidi, R. Khamidullin, I. Abdulagatov. Temperature effect on density and viscosity of light, medium, and heavy crudeoils. in Proc VI IntConf Renewal Energy: Problems and Prospects Makhachkala, Publ. OOO "AЛEФ", vol. 8 (2020), pp. 177–206

  89. M. Yoshimura, C. Boned, G. Galliéro, J.-P. Bazile, A. Baylaucq, H. Ushiki, Influence of the chain length on the dynamic viscosity at high pressure of some 2-alkylamines: measurements and comparative study of some models. Chem. Phys. 369, 126–137 (2010)

    Article  Google Scholar 

  90. J.D. Ferry, Viscoelastic Properties of Polymers (Wiley, New York, 1980)

    Google Scholar 

  91. Y. AlRoomi, R. George, A. Elgibaly, A. Elkamel, Use of a novel surfactant for improving the transportability/transportation of heavy/viscous crude oils. J. Pet. Sci. Eng. 42, 235–243 (2004)

    Article  Google Scholar 

  92. A.H.S. Dehaghani, M.H. Badizad, Experimental study of Iranian heavy crude oil viscosity reduction by diluting with heptane, methanol, toluene, gas condensate and naphtha. Petroleum 2, 415–424 (2016)

    Article  Google Scholar 

  93. I.N. Diayarov, I.Y. Batueva, A.N. Sadykov, N.L. Solodova, Oil Chemistry (Leningrad, Ximiya, 1990), pp.8–127

    Google Scholar 

  94. Russian Standard ГOCT 11506-73, Petroleum Bitumen Softening temperature Determination by Ring and Ball Technique (GSSSD, Moscow, 2002)

    Google Scholar 

  95. R.Z. Fakhrutdinov, V.P. Prokop’ev, A.F. Kamalov, G.M. Kadievskii, V.S. Minkin, I.N. Diyarov, K.R. Shangareev, R.A. Lutfullin, Method of the determination of the composition of oil residues. Russian Patent 1583823 A1 SU, MПК G 01 N 27/72. (SU).4344179/24–21; Publ.07.08.90, Bull.29; 1–5

  96. M.A. Khoshooei, F. Fazlollahi, Y. Maham, A review on the application of differential scanning calorimetry (DSC) to petroleum products characterization and kinetic study. J. Therm. Anal. Calorim. 138, 3455–3484 (2019)

    Article  Google Scholar 

  97. D.I. Sagdeev, M.G. Fomina, I.M. Abdulagatov, Density and viscosity of propylene glycol at high temperatures and high pressures. Fluid Phase Equilib. 450, 99–111 (2017)

    Article  Google Scholar 

  98. D.I. Sagdeev, M.G. Fomina, I.M. Abdulagatov, Density and viscosity of ternary 1-hexene (1)+ 1-octene (2) +(1-)1-decene (3) mixture at high temperatures and high pressures. J. Sol. Chem. 46, 966–988 (2017)

    Article  Google Scholar 

  99. D.I. Sagdeev, M.G. Fomina, G.K. Mukhamedzyanov, I.M. Abdulagatov, Density and viscosity of 1-octene + 1-decene mixture at high temperatures and high pressures. High Temp. High Pres. 45, 119–143 (2016)

    Google Scholar 

  100. D.I. Sagdeev, M.G. Fomina, G.K. Mukhamedzyanov, I.M. Abdulagatov, Experimental study and correlation models of the density and viscosity of 1-hexene and 1-heptene at temperatures from (298 to 473) K and pressures up to 245 MPa. J. Chem. Eng. Data 59, 1105–1119 (2014)

    Article  Google Scholar 

  101. D.I. Sagdeev, M.G. Fomina, G.K. Mukhamedzyanov, I.M. Abdulagatov, Measurements of the density and viscosity of 1-hexene + 1-octene mixtures at high temperatures and high pressures. Thermochim. Acta 592, 73–85 (2014)

    Article  Google Scholar 

  102. D.I. Sagdeev, M.G. Fomina, G.K. Mukhamedzyanov, I.M. Abdulagatov, Simultaneously measurements of the density and viscosity of 1-hexene + 1-decene mixtures at high temperatures and high pressures. J. Mol. Liq. 197, 160–170 (2014)

    Article  Google Scholar 

  103. D.I. Sagdeev, M.G. Fomina, G.K. Mukhamedzyanov, I.M. Abdulagatov, Experimental study of the density and viscosity of n-heptane at temperatures from 298 K to 470 K and pressures up to 245 MPa. Int. J. Thermophys. 34, 1–33 (2013)

    Article  ADS  Google Scholar 

  104. D.I. Sagdeev, M.G. Fomina, G.K. Mukhamedzyanov, I.M. Abdulagatov, Experimental study of the density and viscosity of polyethylene glycols and their mixtures at temperatures from 293 K to 465 K and at high pressures up to 245 MPa. Fluid Phase Equilib. 315, 64–76 (2012)

    Article  Google Scholar 

  105. D.I. Sagdeev, M.G. Fomina, G.K. Mukhamedzyanov, I.M. Abdulagatov, Experimental study of the density and viscosity of polyethylene glycols and their mixtures at temperatures from 293 K to 473 K and at atmospheric pressure. J. Chem. Thermodyn. 43, 1824–1843 (2011)

    Article  Google Scholar 

  106. D.I. Sagdeev, M.G. Fomina, V.A. Alyev, R.Z. Musin, I.M. Abdulagatov, Density of working liquids for diffusion vacuum pumps. J. Chem. Eng. Data 63, 1698–1705 (2018)

    Article  Google Scholar 

  107. D.I. Sagdeev, I.R. Gabitov, V.F. Khairutdinov, M.G. Fomina, V.A. Alyaev, R.S. Sal’manov, V.S. Minkin, F.M. Gumerov, I.M. Abdulagatov, New design of the falling-body rheo-viscometer for high and extra-high viscous liquid measurements. Viscosity of vacuum oils. J. Chem. Eng. Data 65, 1773–1786 (2020)

    Article  Google Scholar 

  108. ISO, Guide to the Expression of Uncertainty in Measurement (ISO, Geneva, 1993)

    Google Scholar 

  109. S.S. Kivilis, Densimeters (Energiya, Moscow, 1980)

    Google Scholar 

  110. E.W. Lemmon, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23, NIST Reference Fluid Thermodynamic and Transport Properties, REFPROP, version 10.0 (Standard Reference Data Program; National Institute of Standards and Technology, Gaithersburg, 2018)

    Google Scholar 

  111. M. Frenkel, R. Chirico, V. Diky, C.D. Muzny, A.F. Kazakov, J.W. Magee, I.M. Abdulagatov, W.K. Jeong, NIST Thermo Data Engine, NIST Standard Reference Database 103b-Pure Compound, Binary Mixtures, and Chemical Reactions, Version 5.0 (National Institute Standards and Technology, Boulder, 2010)

    Google Scholar 

  112. D.I. Sagdeev, M.G. Fomina, G.K. Mukhamedzyanov, I.M. Abdulagatov, Experimental study of the density and viscosity of n-heptane at temperatures from 298 K to 470 K and pressure up to 245 MPa. Int. J. Thermophys. 34, 1–33 (2013)

    Article  ADS  Google Scholar 

  113. D.R. Sharafudinova, L.A. Yagodarova, D.I. Sagdeev, I.M. Abdulagatov, in Proceeding 10th Russian Scientific and Technological Conference “Vacuum Technique and Technology”.12–15 April 2021 (National Research Technological University, Kazan, 2021), pp. 54–55

  114. V.D. Krutologov, M.V. Kukakov, Rotational Viscometer (Mashinostroenie, Moscow, 1984), p.112

    Google Scholar 

  115. D.L. Timrot, A.N. Varava, Experimental study of sodium vapors. Russ. High-Temp. 15, 750–757 (1997)

    Google Scholar 

  116. E.E. Shpilrain, V.A. Fomin, S.N. Skovorodko, G. Sokol, in Study of Viscosity Liquid Metals. Moscow, Sciences (1983), p. 114.

  117. A.N. Solovev, A.B. Kaplun, in Physical-mechanical and Thermophysical Properties Soft Metals and Alloys (Moscow, 1976), pp. 152–161

  118. D.I. Sagdeev, I.M. Abdulagatov, N.K. Nikulin, V.I. Tyulkin, Modeled design of the hydrostatic densimeter for the measurements of the density high viscous oils. Bull. Dagestan State Tech. Univ. 46, 42–52 (2019)

    Google Scholar 

  119. W. Wagner, A. Pruß, New international formulation for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31, 387–535 (2002)

    Article  ADS  Google Scholar 

  120. A. Messaâdi, N. Dhouibi, H. Hamda, F.B.M. Belgacem, Y.H. Adbelkader, N. Ouerfelli, A.H. Hamzaoui, A new equation relating the viscosity Arrhenius temperature and the activation energy for some Newtonian classical solvents. J. Chem. 2015, 1–12 (2015)

    Article  Google Scholar 

  121. R. Ben Haj-Kacem, N. Ouerfelli, J. Herraez, M. Guettari, H. Hamda, M. Dallel, Contribution to modeling the viscosity Arrhenius-type equation for some solvents by statistical correlations analysis. Fluid Phase Equilib. 383, 11–20 (2014)

    Article  Google Scholar 

  122. G.E. Petrosky, F.F. Farshad. Viscosity Correlations for Gulf of Mexico Crude Oils, Production Operations Symposium (Oklahoma City, 1995).

  123. M.C. Merola, C. Carotenuto, V. Gargiulo, F. Stanzione, A. Ciajolo, M. Minale, Chemical–physical analysis of rheologically different samples of a heavy crude oil. Fuel Proc. Tech. 148, 236–247 (2016)

    Article  Google Scholar 

  124. Y. Li, H. Gao, W. Pu, B. Wei, Y. Chen, D. Li, Q. Luo, Viscosity profile prediction of a heavy crude oil during lifting in two deep artesian wells. Chin. J. Chem. Eng. 25, 976–982 (2017)

    Article  Google Scholar 

  125. T. Masuko, J.H. Magill, A comprehensive expression for temperature dependence of liquid viscosity. Nihon Reoroji Gakk 16, 22–26 (1988)

    Article  Google Scholar 

  126. H. Vogel, Das Temperaturabhangigkeitsgesetz der viskosit at von flussigkeiten. Phys. Z. 22, 645–646 (1921)

    Google Scholar 

  127. G.S. Fulcher, Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 8, 339–355 (1925)

    Article  Google Scholar 

  128. G. Tammann, W. Hesse, Die Abhangigkeit der Viscositat vonder temperature bieunterkuhlten Flussigkeiten. Z. Anorg. Allg. Chem. 156, 245–251 (1926)

    Article  Google Scholar 

  129. J. Safarov, G. Huseynova, M. Bashirov, E. Hassel, I. Abdulagatov, Viscosity of 1-ethyl-3-methylimidazolium methane sulfonate over a wide range of temperature and Vogel-Tamman-Fulcher model. Phys. Chem. Liq. 56, 703–717 (2017)

    Article  Google Scholar 

  130. I.M. Abdulagatov, N.D. Azizov, Viscosity of aqueous calcium chloride solutions at high temperatures and high pressures. Fluid Phase Equilib. 240, 204–219 (2006)

    Article  Google Scholar 

  131. I.M. Abdulagatov, N.D. Azizov, Viscosity of aqueous LiI solutions at 293–525 K and 0.1–40 MPa. Thermochim. Acta 439, 8–20 (2005)

    Article  Google Scholar 

  132. M.J.P. Comuñas, A. Baylaucq, C. Boned, J. Fernández, High-pressure measurements of the viscosity and density of two polyethers and two dialkyl carbonates at high pressures. Int. J. Thermophys. 22, 749–768 (2001)

    Article  Google Scholar 

  133. T. Lech, G. Czechowski, J. Jadzyn, Viscosity of the series of 1, n-alkanediols. J. Chem. Eng. Data 46, 725–727 (2001)

    Article  Google Scholar 

  134. K.R. Harris, M. Kanakubo, Self-diffusion coefficients and related transport properties for a number of fragile ionic liquids. J. Chem. Eng. Data 61, 2399–2411 (2016)

    Article  Google Scholar 

  135. L.R. Cook, H.E. King, C.A. Herbst, D.R. Herschbach, Pressure and temperature dependent viscosity of two glass forming liquids: glycerol and dibutyl phthalate. J. Chem. Phys. 100, 5178–5189 (1994)

    Article  ADS  Google Scholar 

  136. M.G. Freire, A.R.R. Teles, M.A.A. Rocha, B. Schroder, C.M.S.S. Neves, P.J. Carvalho, D.V. Evtuguin, L.M.N.B.F. Santos, J.A.P. Coutinho, Thermophysical characterization of ionic liquids able to dissolve biomass. J. Chem. Eng. Data 56, 4813–4822 (2011)

    Article  Google Scholar 

  137. S. Glasstone, K. Laidler, E. Eyring, Theory of Rate Processes (McGraw-Hill, New York, 1941)

    Google Scholar 

  138. H.J.V. Tyrrell, K.R. Harris, Diffusion in Liquids (Butterworths, London, 1984)

    Google Scholar 

  139. R.H. Stokes, R. Mills, Viscosity of Electrolytes and Related Properties (Pergamon Press, New York, 1965)

    Google Scholar 

  140. T. Erday-Gruz, Transport Phenomena in Aqueous Solutions (Wiley, New York, 1942)

    Google Scholar 

  141. D. Tomida, S. Kenmochi, T. Tsukada, K. Qiao, Q. Bao, C. Yokoyama, Viscosity and thermal conductivity of 1-hexyl-3-methylimidazolium tetrafluoroborate and 1-octyl-3-methylimidazolium tetrafluoroborate at pressures up to 20 MPa. Int. J. Thermophys. 33, 959–969 (2012)

    Article  ADS  Google Scholar 

  142. D.S. Viswanath, T.K. Ghosh, G.H.L. Prasad, N.V.K. Dutt, K.Y. Rani, Viscosity of Liquids: Theory, Estimation, Experiment, and Data (Springer, Dordrecht, 2007)

    MATH  Google Scholar 

  143. E.N. Andrade, A theory of the viscosity of liquids-part I. Philos. Mag. 17, 497–511 (1934)

    Article  Google Scholar 

  144. E.N. Andrade, A theory of the viscosity of liquids-part II. Philos. Mag. 17, 698–732 (1934)

    Article  Google Scholar 

  145. A. Einstein, Elementary consideration of the thermal conductivity of dielectric solids. Ann. Phys. German 34, 591–598 (1911)

    Article  ADS  Google Scholar 

  146. M.D. Rintoul, S. Torquato, Computer simulations of dense hard-sphere systems. J. Chem. Phys. 105, 9258–9265 (1996)

    Article  ADS  Google Scholar 

  147. A. Omer, R. Pal, Pipeline flow behavior of water-in-oil emulsions with and without a polymeric additive. J. Pet. Sci. Eng. 33, 983–992 (2010)

    Google Scholar 

  148. M. Mooney, The viscosity of a concentrated suspension of spherical particles. J. Colloid Sci. 16, 13–19 (1961)

    Google Scholar 

  149. N. Saito, Concentration dependence of the viscosity of high polymer solutions I. J. Phys. Soc. Jpn. 5, 4–8 (1950)

    Article  ADS  Google Scholar 

  150. M.H. Kashefi, S. Saedodin, S.H. Rostamian, Effect of silica nano-additive on flash point, pour point, rheological and tribological properties of lubricating engine oil: an experimental study. J. Ther. Anal. Calorim. 147, 4073–4086 (2022)

    Article  Google Scholar 

  151. BROOKFIELD DV-II+Pro Viscometer, Operating Instructions Manual No. M03-165-F0612. Rookfield Engineering Laboratories, INC (2018).

Download references

Funding

The study has been carried out with the financial support by Russian Scientific Foundation (Project # 22-19-00117).

Author information

Authors and Affiliations

Authors

Contributions

DS: Methodology, Project administration; VK: Conceptualization, Data curation; MF: Investigation; VA: Formal analysis, Validation; FG: Funding acquisition; VSM: Formal analysis; IMA: Writing—original draft, Supervision. All authors read and approved the results and final version of manuscript.

Corresponding author

Correspondence to Ilmutdin M. Abdulagatov.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagdeev, D.I., Khairutdinov, V.F., Farakhov, M. et al. Measurements of the Density and Viscosity of Heavy Oil and Water-in-Oil Emulsions Over a Wide Temperature Range. Int J Thermophys 44, 7 (2023). https://doi.org/10.1007/s10765-022-03111-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03111-z

Keywords

Navigation