Skip to main content
Log in

Extended Analytic Embedded-Atom Model for BCC Tantalum and Its Application to Determination of Gibbs Free Energy and Thermal Equation of State

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

To predict the physical behaviors of materials under the extreme condition such as high pressure and high temperature reasonably well, we extend embedded-atom model (EAM) by improving the analytic formalism of the functions of electron density and embedding energy based on the quantum–mechanical results of the electron density distribution in crystal lattice and the variation of energy with respect to the electron density. Employing the extended analytic EAM, we simulate the variation of the Gibbs free energy with respect to temperature, pressure and volume within the framework of the quasiharmonic approximation (QHA) based on the evaluation of the volume dependence of structure energy and phonon frequencies for body-centered cubic (bcc) tantalum (Ta). By minimizing the Gibbs free energy, we determine the thermal equation of state (EOS), the volume-pressure–temperature relation. All calculation results fit well to the experimental and other reliable theoretical calculation results, showing the reliability of the extended analytic EAM in the extended domains of volume, temperature and pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data used are transparent.

References

  1. M.S. Daw, M.I. Baskes, Phys. Rev. B 29, 6443–6453 (1984)

    Article  ADS  Google Scholar 

  2. S.M. Foiles, M.I. Baskes, M.S. Daw, Phys. Rev. B 33, 7983–7991 (1986)

    Article  ADS  Google Scholar 

  3. M.I. Baskes, Phys. Rev. Lett. 5923, 2666–2669 (1987)

    Article  ADS  Google Scholar 

  4. D.J. Oh, R.A. Johnson, J. Mater. Res. 3, 471–478 (1988)

    Article  ADS  Google Scholar 

  5. R.A. Johnson, Phys. Rev. B 37, 3924–3931 (1988)

    Article  ADS  Google Scholar 

  6. H.W. Sheng, M.J. Kramer, A. Cadien, T. Fujita, M.W. Chen, Phys. Rev. B 83, 134118 (2011)

    Article  ADS  Google Scholar 

  7. A.M. Guellil, J.B. Adams, J. Mater. Res. 7, 639 (1992)

    Article  ADS  Google Scholar 

  8. P.A.T. Olsson, Comp. Mater. Sci. 47, 135–145 (2009)

    Article  Google Scholar 

  9. M.I. Baskes, Phys. Rev. B 46, 2727 (1992)

    Article  ADS  Google Scholar 

  10. Z. Cui, F. Gao, Z. Cui, J. Qu, Modelling Simul. Mater. Sci. Eng. 20, 015014 (2012)

    Article  ADS  Google Scholar 

  11. R. Pasianot, D. Farkas, E.J. Savino, Phys. Rev. B 43, 6952 (1991)

    Article  ADS  Google Scholar 

  12. W.-Y. Hu, X.-L. Shu, B.-W. Zhang, Comp. Mater. Sci. 23, 175–189 (2002)

    Article  Google Scholar 

  13. W.-Y. Hu, B.-W. Zhang, B.-Y. Huang, F. Gao, D. Bacon, J. Phys.: Condens. Matter 13, 1193–1213 (2001)

    ADS  Google Scholar 

  14. H.-S. Jin, J.-D. An, Y.-S. Jong, Appl. Phys. A 120, 189 (2015)

    Article  ADS  Google Scholar 

  15. G.-B. Jong, H.-S. Jin, P. Song, Appl. Phys. A 126, 901 (2020)

    Article  ADS  Google Scholar 

  16. C.-G. Jon, H.-S. Jin, C.-M. Ri, P. Song, Phil. Magaz (2019). https://doi.org/10.1080/14786435.2019.1631499

    Article  Google Scholar 

  17. G.-B. Jong, P. Song, H.-S. Jin, Indian J. Phys. 94, 753–766 (2019)

    Article  ADS  Google Scholar 

  18. E. Clementi, C. Roetti, Atomic Data and Nuclear Data Tables, 14, Nos. 3 and 4. Academic, New York (1974)

  19. A. D. McLean, R. S. McLean, Atomic Data and Nuclear Data Tables, 26, Nos. 3 and 4, Academic, New York (1981)

  20. J.C. Lagarias, J.A. Reeds, M.H. Wright, P.E. Wright, SIAM Journal of Optimization 9, 112–147 (1998)

    Article  Google Scholar 

  21. J.H. Rose, J.R. Smith, F. Guinea, J. Ferrante, Phys. Rev. B 29, 2963–2969 (1984)

    Article  ADS  Google Scholar 

  22. S.J. Clark, Z. Kristallogr 220, 567 (2005)

    Article  Google Scholar 

  23. M. Čák, T. Hammerschmidt, J. Rogal, V. Vitek, R. Drautz, J. Phys.: Condens. Matter 26, 195501 (2014)

    Google Scholar 

  24. A.T. Dinsdale, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 15, 317 (1991)

    Article  Google Scholar 

  25. Y. Mishin, A.Y. Lozovoi, Acta Mater. 54, 5013 (2006)

    Article  ADS  Google Scholar 

  26. A. Debernardi, M. Alouani, H. Dreysse, Phys. Rev. B 63, 064305 (2001)

    Article  ADS  Google Scholar 

  27. Z.-L. Liu, L.-C. Cai, X.-R. Chen, Q. Wu, F.-Q. Jing, J. Phys.: Condens. Matter 21, 095408 (2009)

    ADS  Google Scholar 

  28. Z.-Y. Zeng, C.-E. Hu, L.-C. Cai, X.-R. Chen, F.-Q. Jing, J. Phys. Chem. B 114, 298–310 (2010)

    Article  Google Scholar 

  29. K. Wang, R.R. Reeber, Mater. Sci. Eng. R23, 101–137 (1998)

    Article  Google Scholar 

  30. Z.-L. Liu, X.-L. Zhang, L.-C. Cai, X.-R. Chen, Q. Wu, F.-Q. Jing, J. Phys. Chem. Solids 69, 2833–2840 (2008)

    Article  ADS  Google Scholar 

  31. J.A. Moriarty, J.F. Belak, R.E. Rudd, P. Soderlind, F.H. Streitz, L.H. Yang, J. Phys.: Condens. Matter 14, 2825–2857 (2002)

    ADS  Google Scholar 

Download references

Funding

There is no funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

The first and second authors derived the formulae and wrote the code together. The third, fourth and fifth authors processed the calculation results and wrote the manuscript together.

Corresponding author

Correspondence to Chung-Guk Jon.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This work has neither been published previously, nor under consideration for publication elsewhere. It will not be published elsewhere in the same form, in English or in any other language, without the written consent of the Publisher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jong, MR., Song, P., Jon, CG. et al. Extended Analytic Embedded-Atom Model for BCC Tantalum and Its Application to Determination of Gibbs Free Energy and Thermal Equation of State. Int J Thermophys 43, 180 (2022). https://doi.org/10.1007/s10765-022-03107-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03107-9

Keywords

Navigation