Skip to main content
Log in

Experimental Studies and Analytical Analysis of Thermophysical Properties of Ethylene Glycol–Water-Based Nanofluids Dispersed with Multi-walled Carbon Nanotubes

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The present study investigates the thermal conductivity and dynamic viscosity of ethylene glycol–water solutions dispersed with oxidized multi-walled carbon nanotubes. The physico-thermal properties and Mouromtseff number (Mo) were used to evaluate the heat transfer properties of the nanofluids. Ethylene glycol–water mixtures were chosen as base fluids, and the volume fraction of ethylene glycol varied from 100 % to 0 % (pure water). Oxidized multi-walled carbon nanotubes in weight percentages of 0.0625, 0.125, 0.25, and 0.5 were dispersed in ethylene glycol–water mixtures to achieve the best stability. The stability of the nanofluids was monitored by UV–Vis spectroscopy for 2 months. The dispersion of multi-walled carbon nanotubes in the base fluids resulted in a significant improvement in thermal conductivity. To derive correlations for thermal conductivity and dynamic viscosity, 1 500 data points were collected for all possible combinations of temperature, weight percent of multi-walled carbon nanotubes, and ethylene glycol content. The Mouromtseff number (Mo) showed that dilute nanofluids at low concentrations are the most effective heat transfer medium in turbulent flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data and relevant material are stored in Mendeley database.

Abbreviations

CP :

Specific heat (kJ·kg−1·K−1)

\(k\) :

Thermal conductivity (W·m−1·K−1).

Mo:

Mouromtseff number, \(\left[\frac{{k}^{a}{\rho }^{b}{c}_{p}^{d}}{{\mu }^{c}}\right]\).

N:

Spindle speed of rheometer

P:

Power of the instrument

R:

Radiation and interfacial effects

T:

Temperature °C

U:

Uncertainty in measurement

α:

Volume percentage of ethylene glycol in water

β:

Weight fraction of nanoparticles

µ:

Dynamic viscosity (centipoise, cP)

\(\rho\) :

Density of the fluid (kg·m−3)

ϕ:

Weight fraction of MWCNTs

nf :

Nanofluid

base:

Base fluids

DM water:

Demineralized water

EG:

Ethylene glycol

MWCNTs:

Multi-walled carbon nanotubes

UV–Vis spectroscopy:

Ultraviolet–Visible spectroscopy

% wt:

Weight percentage

References

  1. A.R.I. Ali, B. Salam, SN Appl. Sci. 2, 1636 (2020). https://doi.org/10.1007/s42452-020-03427-1

    Article  Google Scholar 

  2. A.R. Alizadeh Jajarm, H.R. Goshayeshi, K. Bashirnezhad, Nanoscale Microscale Thermophys. Eng. 26(2–3) 95–111 (2022). https://doi.org/10.1080/15567265.2022.2072790

    Article  ADS  Google Scholar 

  3. M.J. Assael, W.A. Wakeham, Int. J. Thermophys. (2019). https://doi.org/10.1007/s10765-019-2520-6

    Article  Google Scholar 

  4. M.J. Assael, I.N. Metaxa, J. Arvanitidis, D. Christofilos, C. Lioutas, Int. J. Thermophys. 26, 647–664 (2005)

    Article  ADS  Google Scholar 

  5. D. Wen, Y. Ding, Int. J. Heat Mass Transf. 47, 24 (2004)

    Google Scholar 

  6. Y. Ding, H. Alias, D. Wen, R.A. Williams, Int. J. Heat Mass Transf. 49, 240–250 (2006)

    Article  Google Scholar 

  7. F. Aviles, J.V. Cauich, L. Moo-Tah, A. May-Pat, R. Vargos-Coronado, Carbon (2009). https://doi.org/10.1016/j.carbon.2009.06.044

    Article  Google Scholar 

  8. G.K. Poongavanam, V. Ramalingam, Int. J. Therm. Sci. 136, 15 (2019). https://doi.org/10.1016/j.ijthermalsci.2018.10.007

    Article  Google Scholar 

  9. M. Hemmat Esfe, Arab. J. Sci. Eng. 46, 5957 (2021). https://doi.org/10.1007/s13369-020-05091-4

    Article  Google Scholar 

  10. M. Hemmat Esfe, S. Saedodin, O. Mahian, S. Wongwises, Int. Commun. Heat Mass Transf. 58, 138–146 (2014)

    Article  Google Scholar 

  11. I.D. Rosca, F. Watari, M. Uo, T. Akasaka, Carbon (2005). https://doi.org/10.1016/j.carbon.2005.06.019

    Article  Google Scholar 

  12. H. Khani, O. Moradi, J. Nanostruct. Chem. (2013). https://doi.org/10.1186/2193-8865-3-73

    Article  Google Scholar 

  13. G.A. Longo, C. Zilio, Int. J. Thermophys. (2013). https://doi.org/10.1007/s10765-013-1478-z

    Article  Google Scholar 

  14. L. Godson, D. Mohan-Lal, S. Wongwises, J. Nanoscale Microscale Thermophys. Eng. (2010). https://doi.org/10.1080/15567265.2010.500319

    Article  Google Scholar 

  15. L. Vaisman, H.D. Wagner, G. Marom, Adv. Colloid Interface Sci. (2006). https://doi.org/10.1016/j.cis.2006.11.007

    Article  Google Scholar 

  16. S. Mukherjee, S.R. Panda, P.C. Mishra, Int. J. Thermophys. 41, 162 (2020). https://doi.org/10.1007/s10765-020-02745-1

    Article  ADS  Google Scholar 

  17. M. Baratpour, A. Karimipour, M. Afrand, S. Wongwises, Int. Commun. Heat Mass Transf. 74, 108–113 (2016). https://doi.org/10.1016/j.icheatmasstransfer.2016.02.008

    Article  Google Scholar 

  18. P. Ganesh Kumar, D. Sakthivadivel, M. Meikandan, V.S. Vigneswaran, R. Velraj, Heliyon (2019). https://doi.org/10.1016/j.heliyon.2019.e02385

    Article  Google Scholar 

  19. P. Kanti, K.V. Sharma, K.M. Yashawantha, M. Jamei, Z. Said, Sol. Energy Mater Sol. Cells 234, 111423 (2022). https://doi.org/10.1016/j.solmat.2021.111423

    Article  Google Scholar 

  20. Q. Zheng, S. Kaur, C. Dames, R.S. Prasher, Int. J. Heat Mass Transf. 151, 119331 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.119331

    Article  Google Scholar 

  21. Q. He, S. Zeng, S. Wang, Appl. Therm. Eng. 88, 165–171 (2015). https://doi.org/10.1016/j.applthermaleng.2014.09.053

    Article  Google Scholar 

  22. Q.H. Yang, P.X. Hou, S. Bai, C. Liu, H.M. Cheng, Carbon (2002). https://doi.org/10.1016/S0008-6223(01)00075-6

    Article  Google Scholar 

  23. R.E. Simons, Electron. Cool. 12, 10 (2006)

    Google Scholar 

  24. R. Agarwal, K. Verma, N. Agrawal, R. Singh, Exp. Therm. Fluid Sci. (2016). https://doi.org/10.1016/j.expthermflusci.2016.08.007

    Article  Google Scholar 

  25. R.S. Vajjha, D.K. Das, Int. J. Heat Mass Transf. (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.048

    Article  Google Scholar 

  26. S. Halelfadl, T. Maré, P. Estellé, Exp. Therm. Fluid Sci (2014). https://doi.org/10.1016/j.expthermflusci.2013.11.010

    Article  Google Scholar 

  27. I. Wole-osho, E.C. Okonkwo, S. Abbasoglu, Int. J. Thermophys. 41, 157 (2020). https://doi.org/10.1007/s10765-020-02737-1

    Article  ADS  Google Scholar 

  28. X. Zhang, H. Gu, M. Fujii, Int. J. Thermophys. (2006). https://doi.org/10.1007/s10765-006-0054-1

    Article  Google Scholar 

  29. Y. Yang, Z.G. Zhang, E.A. Grulke, W.B. Anderson, Int. J. Heat Mass Transf. (2005). https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.038

    Article  Google Scholar 

  30. H. Zhang, H.M. Cheng, H.X. Li, J. Phys. Chem. B (2006). https://doi.org/10.1021/jp060193y

    Article  Google Scholar 

  31. B. Pak, Y. Cho., Exp. Heat Transf. 11(2)151–170 (1998). https://doi.org/10.1080/08916159808946559

    Article  ADS  Google Scholar 

  32. T.G. Beckwith, R.D. Marangoni, J.H. Lienhard (1990), in Mechanical Measurements (5th edn.). (New York, Addison-Wesley Publishing company)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support received from Hindustan Petroleum Corporation Ltd., Corporate R&D for conducting the tests. The authors acknowledge the assistance from the central university, Hyderabad, in characterization.

Funding

The authors received no funding from any sources.

Author information

Authors and Affiliations

Authors

Contributions

AD and VS have conceptualized the research, investigated, curated the data, and prepared the manuscript. AKJ has done the data validation and reviewed the manuscript. MSB reviewed the manuscript. SBT has collected resources and validated the data.

Corresponding author

Correspondence to Srinivas Vadapalli.

Ethics declarations

Conflict of interest

The authors declare no potential competing interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dosodia, A., Vadapalli, S., Jain, A.K. et al. Experimental Studies and Analytical Analysis of Thermophysical Properties of Ethylene Glycol–Water-Based Nanofluids Dispersed with Multi-walled Carbon Nanotubes. Int J Thermophys 43, 175 (2022). https://doi.org/10.1007/s10765-022-03106-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03106-w

Keywords

Navigation