Abstract
The present study investigates the thermal conductivity and dynamic viscosity of ethylene glycol–water solutions dispersed with oxidized multi-walled carbon nanotubes. The physico-thermal properties and Mouromtseff number (Mo) were used to evaluate the heat transfer properties of the nanofluids. Ethylene glycol–water mixtures were chosen as base fluids, and the volume fraction of ethylene glycol varied from 100 % to 0 % (pure water). Oxidized multi-walled carbon nanotubes in weight percentages of 0.0625, 0.125, 0.25, and 0.5 were dispersed in ethylene glycol–water mixtures to achieve the best stability. The stability of the nanofluids was monitored by UV–Vis spectroscopy for 2 months. The dispersion of multi-walled carbon nanotubes in the base fluids resulted in a significant improvement in thermal conductivity. To derive correlations for thermal conductivity and dynamic viscosity, 1 500 data points were collected for all possible combinations of temperature, weight percent of multi-walled carbon nanotubes, and ethylene glycol content. The Mouromtseff number (Mo) showed that dilute nanofluids at low concentrations are the most effective heat transfer medium in turbulent flow.
Similar content being viewed by others
Data Availability
The data and relevant material are stored in Mendeley database.
Abbreviations
- CP :
-
Specific heat (kJ·kg−1·K−1)
- \(k\) :
-
Thermal conductivity (W·m−1·K−1).
- Mo:
-
Mouromtseff number, \(\left[\frac{{k}^{a}{\rho }^{b}{c}_{p}^{d}}{{\mu }^{c}}\right]\).
- N:
-
Spindle speed of rheometer
- P:
-
Power of the instrument
- R:
-
Radiation and interfacial effects
- T:
-
Temperature °C
- U:
-
Uncertainty in measurement
- α:
-
Volume percentage of ethylene glycol in water
- β:
-
Weight fraction of nanoparticles
- µ:
-
Dynamic viscosity (centipoise, cP)
- \(\rho\) :
-
Density of the fluid (kg·m−3)
- ϕ:
-
Weight fraction of MWCNTs
- nf :
-
Nanofluid
- base:
-
Base fluids
- DM water:
-
Demineralized water
- EG:
-
Ethylene glycol
- MWCNTs:
-
Multi-walled carbon nanotubes
- UV–Vis spectroscopy:
-
Ultraviolet–Visible spectroscopy
- % wt:
-
Weight percentage
References
A.R.I. Ali, B. Salam, SN Appl. Sci. 2, 1636 (2020). https://doi.org/10.1007/s42452-020-03427-1
A.R. Alizadeh Jajarm, H.R. Goshayeshi, K. Bashirnezhad, Nanoscale Microscale Thermophys. Eng. 26(2–3) 95–111 (2022). https://doi.org/10.1080/15567265.2022.2072790
M.J. Assael, W.A. Wakeham, Int. J. Thermophys. (2019). https://doi.org/10.1007/s10765-019-2520-6
M.J. Assael, I.N. Metaxa, J. Arvanitidis, D. Christofilos, C. Lioutas, Int. J. Thermophys. 26, 647–664 (2005)
D. Wen, Y. Ding, Int. J. Heat Mass Transf. 47, 24 (2004)
Y. Ding, H. Alias, D. Wen, R.A. Williams, Int. J. Heat Mass Transf. 49, 240–250 (2006)
F. Aviles, J.V. Cauich, L. Moo-Tah, A. May-Pat, R. Vargos-Coronado, Carbon (2009). https://doi.org/10.1016/j.carbon.2009.06.044
G.K. Poongavanam, V. Ramalingam, Int. J. Therm. Sci. 136, 15 (2019). https://doi.org/10.1016/j.ijthermalsci.2018.10.007
M. Hemmat Esfe, Arab. J. Sci. Eng. 46, 5957 (2021). https://doi.org/10.1007/s13369-020-05091-4
M. Hemmat Esfe, S. Saedodin, O. Mahian, S. Wongwises, Int. Commun. Heat Mass Transf. 58, 138–146 (2014)
I.D. Rosca, F. Watari, M. Uo, T. Akasaka, Carbon (2005). https://doi.org/10.1016/j.carbon.2005.06.019
H. Khani, O. Moradi, J. Nanostruct. Chem. (2013). https://doi.org/10.1186/2193-8865-3-73
G.A. Longo, C. Zilio, Int. J. Thermophys. (2013). https://doi.org/10.1007/s10765-013-1478-z
L. Godson, D. Mohan-Lal, S. Wongwises, J. Nanoscale Microscale Thermophys. Eng. (2010). https://doi.org/10.1080/15567265.2010.500319
L. Vaisman, H.D. Wagner, G. Marom, Adv. Colloid Interface Sci. (2006). https://doi.org/10.1016/j.cis.2006.11.007
S. Mukherjee, S.R. Panda, P.C. Mishra, Int. J. Thermophys. 41, 162 (2020). https://doi.org/10.1007/s10765-020-02745-1
M. Baratpour, A. Karimipour, M. Afrand, S. Wongwises, Int. Commun. Heat Mass Transf. 74, 108–113 (2016). https://doi.org/10.1016/j.icheatmasstransfer.2016.02.008
P. Ganesh Kumar, D. Sakthivadivel, M. Meikandan, V.S. Vigneswaran, R. Velraj, Heliyon (2019). https://doi.org/10.1016/j.heliyon.2019.e02385
P. Kanti, K.V. Sharma, K.M. Yashawantha, M. Jamei, Z. Said, Sol. Energy Mater Sol. Cells 234, 111423 (2022). https://doi.org/10.1016/j.solmat.2021.111423
Q. Zheng, S. Kaur, C. Dames, R.S. Prasher, Int. J. Heat Mass Transf. 151, 119331 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.119331
Q. He, S. Zeng, S. Wang, Appl. Therm. Eng. 88, 165–171 (2015). https://doi.org/10.1016/j.applthermaleng.2014.09.053
Q.H. Yang, P.X. Hou, S. Bai, C. Liu, H.M. Cheng, Carbon (2002). https://doi.org/10.1016/S0008-6223(01)00075-6
R.E. Simons, Electron. Cool. 12, 10 (2006)
R. Agarwal, K. Verma, N. Agrawal, R. Singh, Exp. Therm. Fluid Sci. (2016). https://doi.org/10.1016/j.expthermflusci.2016.08.007
R.S. Vajjha, D.K. Das, Int. J. Heat Mass Transf. (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.048
S. Halelfadl, T. Maré, P. Estellé, Exp. Therm. Fluid Sci (2014). https://doi.org/10.1016/j.expthermflusci.2013.11.010
I. Wole-osho, E.C. Okonkwo, S. Abbasoglu, Int. J. Thermophys. 41, 157 (2020). https://doi.org/10.1007/s10765-020-02737-1
X. Zhang, H. Gu, M. Fujii, Int. J. Thermophys. (2006). https://doi.org/10.1007/s10765-006-0054-1
Y. Yang, Z.G. Zhang, E.A. Grulke, W.B. Anderson, Int. J. Heat Mass Transf. (2005). https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.038
H. Zhang, H.M. Cheng, H.X. Li, J. Phys. Chem. B (2006). https://doi.org/10.1021/jp060193y
B. Pak, Y. Cho., Exp. Heat Transf. 11(2)151–170 (1998). https://doi.org/10.1080/08916159808946559
T.G. Beckwith, R.D. Marangoni, J.H. Lienhard (1990), in Mechanical Measurements (5th edn.). (New York, Addison-Wesley Publishing company)
Acknowledgements
The authors gratefully acknowledge the support received from Hindustan Petroleum Corporation Ltd., Corporate R&D for conducting the tests. The authors acknowledge the assistance from the central university, Hyderabad, in characterization.
Funding
The authors received no funding from any sources.
Author information
Authors and Affiliations
Contributions
AD and VS have conceptualized the research, investigated, curated the data, and prepared the manuscript. AKJ has done the data validation and reviewed the manuscript. MSB reviewed the manuscript. SBT has collected resources and validated the data.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no potential competing interest with respect to the research, authorship, and/or publication of this article.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Dosodia, A., Vadapalli, S., Jain, A.K. et al. Experimental Studies and Analytical Analysis of Thermophysical Properties of Ethylene Glycol–Water-Based Nanofluids Dispersed with Multi-walled Carbon Nanotubes. Int J Thermophys 43, 175 (2022). https://doi.org/10.1007/s10765-022-03106-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10765-022-03106-w