Skip to main content
Log in

Study of Density and Viscosity of Formic Acid + 1-Alkanols Mixtures: Application of PC-SAFT Model

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In the present work, densities and viscosities for the formic acid (FA) + 1-Alkanol solutions have been analyzed. Excess molar volume \(\mathop V\nolimits_{m}^{E}\) and viscosity deviation \(\Delta \eta\) for five binary fluids of FA with 1-pentanol up to 1-nonanol at different temperatures were measured. Binary solutions of FA with 1-pentanol and 1-hexanol have negative \(\mathop V\nolimits_{m}^{E}\), whereas other binary mixtures have positive \(\mathop V\nolimits_{m}^{E}\). For the binary mixtures of FA and 1-nonanol, a miscibility gap was observed at the mole fractions greater than 0.78. All binary systems showed negative viscosity deviations. According to the findings, molecular interactions are stronger in the solutions containing shorter alcohols, and physical interactions are more important in longer 1-alkanols. The effects are related to the association between unlike molecules, dipolar interactions, and structural accommodations. Furthermore, the applicability of the PC-SAFT was tested to correlate the density, excess molar enthalpy, and the activity coefficients of the binary mixtures. Density and viscosity values are new and have not yet been reported in scientific papers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article and its supplementary information files.

References

  1. M. Behroozi, H. Zarei, J. Chem. Eng. Data 57, 1089 (2012)

    Article  Google Scholar 

  2. M. Almasi, R. Daneshi, J. Chem. Eng. Data 63, 3881 (2018)

    Article  Google Scholar 

  3. B. Sarkoohaki, M. Almasi, M. Karimkhani, J. Chem. Eng. Data 63, 2257 (2018)

    Article  Google Scholar 

  4. M. Almasi, J. Mol. Liq. 209, 346 (2015)

    Article  Google Scholar 

  5. M. Almasi, Thermochim. Acta 591, 75 (2014)

    Article  Google Scholar 

  6. Z. Khedri, M. Almasi, A. Maleki, Chem. Eng. Data 64, 4465 (2019)

    Article  Google Scholar 

  7. M. Almasi, H. Nasim, J. Chem. Thermodyn. 89, 1 (2015)

    Article  Google Scholar 

  8. M.A. Cases, A. Marigliano, C. Bonatti, H. Sólimo, J. Chem. Eng. Data 46, 712 (2001)

    Article  Google Scholar 

  9. C. Yang, G. Wei, Y. Li, J. Chem. Eng. Data 53, 1211 (2008)

    Article  Google Scholar 

  10. B. Long, Y. Ding, J. Mol. Liq. 206, 137 (2015)

    Article  Google Scholar 

  11. F. Kohler, H. Atrops, H. Kalali, E. Liebermann, E. Wilhelm, F. Ratkovics, T. Salamon, J. Phys. Chem. 85, 2520 (1981)

    Article  Google Scholar 

  12. J. Gross, G. Sadowski, Ind. Eng. Chem. Res. 40, 1244 (2001)

    Article  Google Scholar 

  13. J. Gross, G. Sadowski, Ind. Eng. Chem. Res. 41, 5510 (2002)

    Article  Google Scholar 

  14. S.H. Huang, M. Radosz, Ind. Eng. Chem. Res. 30, 1994 (1991)

    Article  Google Scholar 

  15. H. Veith, M.C.H. Voges, J. Albert, ACS Omega 2, 8982 (2017)

    Article  Google Scholar 

  16. S. Mahmoudabadi, Gh. Pazuki, J. Pharm. Sci. 110, 2442 (2021)

    Article  Google Scholar 

  17. J. Zhao, J. Bao, Y. Hu, J. Chem. Thermodyn. 21, 811 (1989)

    Article  Google Scholar 

  18. A. Apelblat, A. Tamir, M. Wagner, Z. Phys. Chem. 134, 1 (1983)

    Article  Google Scholar 

  19. S. Mahmoudabadi, Gh. Pazuki, Sci. Rep. 11, 6405 (2021)

    Article  ADS  Google Scholar 

  20. O.J. Redlich, A.T. Kister, Ind. Eng. Chem. 40, 345 (1948)

    Article  Google Scholar 

  21. H.A. Zarei, J. Mol. Liq. 130, 74 (2007)

    Article  Google Scholar 

  22. B.S. Lark, R.C. Palta, J. Chem. Thermodyn. 12, 287 (1980)

    Article  Google Scholar 

  23. T. Chandraiah, S. Karlapudi, V. Govinda, N.Y. Sreedhar, I. Bahadur, J. Mol. Liq. 255, 354 (2018)

    Article  Google Scholar 

  24. B. Gonzalez, A. Domínguez, J. Tojo, J. Chem. Eng. Data 49, 1590 (2004)

    Article  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by MA and SH. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mohammad Almasi.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 254 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heydarian, S., Almasi, M. Study of Density and Viscosity of Formic Acid + 1-Alkanols Mixtures: Application of PC-SAFT Model. Int J Thermophys 43, 173 (2022). https://doi.org/10.1007/s10765-022-03104-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03104-y

Keywords

Navigation