Skip to main content
Log in

Phonon Inelastic Scattering in Ultrathin HfO2-Based Layer-by-Layer Nanostructure

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

HfO2, as a kind of high dielectric ceramic material, has important applications in microelectronic devices. With device miniaturization, the intrinsic thermal conductivity and thermal boundary resistance of ultrathin HfO2 films on Si substrate are becoming increasingly important in thermal management related to heat conduction for gate dielectrics on a few nanometer scales. To study the thickness and temperature dependences of the thermal properties, a series of ultrathin HfO2 films with thickness of 2 nm, 6 nm, 10 nm and 20 nm are grown on Si substrates. The intrinsic thermal conductivities and the thermal boundary resistances are simultaneously measured by the two-color femtosecond pump–probe technique between 300 and 500 K. The intrinsic thermal conductivity of the 2 nm film is about 0.13 Wm−1·K−1, and the thermal conductivity of HfO2 is positive correlated to the thickness. The measured thermal boundary conductance is positive correlated to the temperature. The contributions of elastic and inelastic scattering is determined through the anharmonic inelastic model, and the results show that the inelastic scattering plays a nonnegligible role in interfacial thermal transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. G.D. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys. 87, 484 (2000). https://doi.org/10.1063/1.371888

    Article  ADS  Google Scholar 

  2. M.C. Cheynet, S. Pokrant, F.D. Tichelaar, J.L. Rouvière, Crystal structure and band gap determination of HfO2 thin films. J. Appl. Phys. 101, 054101 (2007). https://doi.org/10.1063/1.2697551

    Article  ADS  Google Scholar 

  3. G.D. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys. 89, 5243–5275 (2001). https://doi.org/10.1063/1.1361065

    Article  ADS  Google Scholar 

  4. M. Rinkio, A. Johansson, G.S. Paraoanu, P. Torma, Nano Lett. 9, 643–647 (2009). https://doi.org/10.1021/nl8029916

    Article  ADS  Google Scholar 

  5. R. Chow, S. Falabella, G.E. Loomis, F. Rainer, C.J. Stolz, M.R. Kozlowski, Appl. Opt. 32, 5567–5574 (1993). https://doi.org/10.1364/AO.32.005567

    Article  ADS  Google Scholar 

  6. A.J. Waldorf, J.A. Dobrowolski, B.T. Sullivan, L.M. Plante, Appl. Opt. 32, 5583–5593 (1993). https://doi.org/10.1364/AO.32.005583

    Article  ADS  Google Scholar 

  7. X. Yang, F.C. Jentoft, R.E. Jentoft, F. Girgsdies, T. Ressler, Catal. Lett. 81, 25–31 (2002). https://doi.org/10.1023/A:1016095603350

    Article  Google Scholar 

  8. S. De Rossi, G. Ferraris, M. Valigi, D. Gazzoli, Appl. Catal. A 231, 173–184 (2002). https://doi.org/10.1016/S0926-860X(02)00049-2

    Article  Google Scholar 

  9. M.F. Al-Kuhaili, S.M.A. Durrani, E.E. Khawaja, J. Phys. D: Appl. Phys. 37, 1254–1261 (2004). https://doi.org/10.1088/0022-3727/37/8/015

    Article  ADS  Google Scholar 

  10. H. Gruger, C. Kunath, E. Kurth, S. Sorge, W. Pufe, Mater. Res. Soc. Symp. Proc. 869, 21 (2005). https://doi.org/10.1557/PROC-869-D2.1

    Article  Google Scholar 

  11. E. Pop, K.E. Goodson, J. Electron. Packag. 128, 102–108 (2006). https://doi.org/10.1115/1.2188950

    Article  Google Scholar 

  12. E. Pop, S. Sinha, K.E. Goodson, Proc. IEEE 94, 1587–1601 (2006). https://doi.org/10.1109/JPROC.2006.879794

    Article  Google Scholar 

  13. S.M. Lee, D.G. Cahill, T.H. Allen, Phys. Rev. B. 52, 253–257 (1995). https://doi.org/10.1103/PhysRevB.52.253

    Article  ADS  Google Scholar 

  14. M. Hinz, O. Marti, B. Gotsmann, M.A. Lantz, U. Durig, Appl. Phys. Lett. 92, 043122 (2008). https://doi.org/10.1063/1.2840186

    Article  ADS  Google Scholar 

  15. M.A. Panzer, M. Shandalov, J.A. Rowlette, Y. Oshima, Y.W. Chen, P.C. McIntyre, K.E. Goodson, IEEE Electron Device Lett. 30, 1269–1271 (2009). https://doi.org/10.1109/LED.2009.2032937

    Article  ADS  Google Scholar 

  16. B.W. Olson, S. Graham, K. Chen, Rev. Sci. Instrum. 76, 053901 (2005). https://doi.org/10.1063/1.1896619

    Article  ADS  Google Scholar 

  17. B. Krenzer, A. Hanisch-Blicharski, P. Schneider et al., Phys. Rev. B 80, 024307 (2009). https://doi.org/10.1103/PhysRevB.80.024307

    Article  ADS  Google Scholar 

  18. A. Chaudhuri, A. Kundu, D. Roy et al., Phys. Rev. B 81, 064301 (2010). https://doi.org/10.1103/PhysRevB.81.064301

    Article  ADS  Google Scholar 

  19. M.N. Luckyanova, J. Mendoza, H. Lu et al., Sci. Adv. 4, 9460–9469 (2018). https://doi.org/10.1126/sciadv.aat9460

    Article  ADS  Google Scholar 

  20. P.Q. Jiang, X. Qian, R.G. Yang, J. Appl. Phys. 124, 161103 (2018). https://doi.org/10.1063/1.5046944

    Article  ADS  Google Scholar 

  21. Z.L. Wang, X. Tian, J.G. Liang et al., Int. J. Therm. Sci. 79, 266–275 (2014). https://doi.org/10.1016/j.ijthermalsci.2014.01.017

    Article  Google Scholar 

  22. X.W. Wang, Z. Chen, F.Y. Sun et al., Meas. Sci. Technol. 29, 035902 (2018). https://doi.org/10.1088/1361-6501/aa9e18

    Article  ADS  Google Scholar 

  23. A.D. Rakic, A.B. Djurisic, J.M. Elazar et al., Appl. Opt. 37, 5271–5283 (1998). https://doi.org/10.1364/ao.37.005271

    Article  ADS  Google Scholar 

  24. D.G. Cahill, Rev. Sci. Instrum. 75, 5119–5122 (2004). https://doi.org/10.1063/1.1819431

    Article  ADS  Google Scholar 

  25. A. Schmidt, M. Chiesa, X. Chen, G. Chen, Rev. Sci. Instrum. 79, 064902 (2008). https://doi.org/10.1063/1.2937458

    Article  ADS  Google Scholar 

  26. R.M. Costescu, M.A. Wall, D.G. Cahill, Phys. Rev. B. 67, 054302 (2003). https://doi.org/10.1103/PhysRevB.67.054302

    Article  ADS  Google Scholar 

  27. J. Yang, E. Ziade, A.J. Schmidt, Rev. Sci. Instrum. 87, 014901 (2016). https://doi.org/10.1063/1.4939671

    Article  ADS  Google Scholar 

  28. E.A. Scott, J.T. Gaskins, S.W. King, P.E. Hopkins, APL Mater. 6, 058302–058310 (2018). https://doi.org/10.1063/1.5021044

    Article  ADS  Google Scholar 

  29. M.N. Luckyanova, J. Garg, K. Esfarjani, A. Jandl, M.T. Bulsara, A.J. Schmidt, A.J. Minnich, S. Chen, M.S. Dresselhaus, Z. Ren, E.A. Fitzgerald, G. Chen, Science 338, 936–939 (2012). https://doi.org/10.1126/science.1225549

    Article  ADS  Google Scholar 

  30. G. Chen, Nanoscale Energy Transport and Conversion (Oxford University Press, New York, 2005), pp.180–185

    Google Scholar 

  31. S.G. Volz, G. Chen, Appl. Phys. Lett. 75, 2056–2058 (1999). https://doi.org/10.1063/1.124914

    Article  ADS  Google Scholar 

  32. D.G. Cahill, P.V. Braun, G. Chen, D.R. Clarke, S. Fan, K.E. Goodson, P. Keblinski, W.P. King, G.D. Mahan, A. Majumdar, H.J. Maris, S.R. Phillpot, E. Pop, L. Shi, Appl. Phys. Rev. 1, 011305 (2014). https://doi.org/10.1063/1.4832615

    Article  ADS  Google Scholar 

  33. A.J.M. Giesbers, P. Procházka, C.F.J. Flipse, Phys. Rev. B 87, 195405 (2013). https://doi.org/10.1103/PhysRevB.87.195405

    Article  ADS  Google Scholar 

  34. C. Chiritescu, D.G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski, P. Zschack 315, 351–353 (2007). https://doi.org/10.1126/science.1136494

    Article  Google Scholar 

  35. F.J. Si, W.J. Lu, F.L. Tang, Chin. Phys. B 21, 076501 (2012). https://doi.org/10.1088/1674-1056/21/7/076501

    Article  ADS  Google Scholar 

  36. J.C. Duda, P.M. Norris, P.E. Hopkins, J. Heat Transfer 133, 074501 (2011). https://doi.org/10.1115/1.4003575

    Article  Google Scholar 

  37. P.E. Hopkins, R.N. Salaway, R.J. Stevens, P.M. Norris, Int. J. Thermophys. 28, 947–957 (2007). https://doi.org/10.1007/s10765-007-0236-5

    Article  ADS  Google Scholar 

  38. Z.Y. Ong, E. Pop, Phys. Rev. B 81, 155408 (2010). https://doi.org/10.1016/j.ijthermalsci.2018.07.004

    Article  ADS  Google Scholar 

  39. E.T. Swartz, R.O. Pohl, Appl. Phys. Lett. 51, 2200–2202 (1987). https://doi.org/10.1063/1.98939

    Article  ADS  Google Scholar 

  40. P.E. Hopkins, J. Appl. Phys. 106, 013528 (2009). https://doi.org/10.1063/1.3169515

    Article  ADS  Google Scholar 

  41. P.E. Hopkins, J.C. Duda, P.M. Norris, J. Heat Transfer 133, 062401–062411 (2011). https://doi.org/10.1115/1.4003549

    Article  Google Scholar 

  42. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169

    Article  ADS  Google Scholar 

  43. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758

    Article  ADS  Google Scholar 

  44. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  45. A. Togo, I. Tanaka, Scr. Mater. 108, 1–5 (2015). https://doi.org/10.1016/j.scriptamat.2015.07.021

    Article  ADS  Google Scholar 

  46. A. Carreras, A. Togo, I. Tanaka, Comp. Phys. Commun. 221, 221–234 (2017). https://doi.org/10.1016/j.cpc.2017.08.017

    Article  ADS  Google Scholar 

  47. X. Zhang, J. Jiang, J. Phys. Chem. C 117, 19441 (2013). https://doi.org/10.1021/jp405156y

    Article  Google Scholar 

  48. Q. Wang, X. Wang, X. Liu, J. Zhang, J. Appl. Phys. 129, 235102 (2021). https://doi.org/10.1063/5.0052742

    Article  ADS  Google Scholar 

Download references

Funding

We acknowledge funding supports from the National Natural Science Foundation of China (Grant No. 51876223) and Natural Science Foundation of Shandong Province (Grant No. ZR2019MEE081).

Author information

Authors and Affiliations

Authors

Contributions

WB: performed the experiments, simulations and drafted the manuscript under the supervising of ZW. ZW and DT: reviewed and edited the manuscript.

Corresponding author

Correspondence to Zhaoliang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, W., Wang, Z. & Tang, D. Phonon Inelastic Scattering in Ultrathin HfO2-Based Layer-by-Layer Nanostructure. Int J Thermophys 43, 179 (2022). https://doi.org/10.1007/s10765-022-03094-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03094-x

Keywords

Navigation