Skip to main content
Log in

Effect of the Working Fluid Charge Ratio and Heat Flux on the Temperature Homogenization Characteristics of a Vapor Chamber-Type Heat Spreader

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this work, the temperature homogenization characteristics of a vapor chamber-type heat spreader were investigated. A copper vapor chamber with dimensions of 102 mm × 102 mm × 5 mm (width × length × thickness) was tested, and the distributions of the radial temperature and cumulative effective thermal conductivity across the heat spreading surface were measured at different working fluid charge ratios and heat fluxes. Water was employed as the working fluid at charge ratios of approximately 30%, 40%, and 60%. The vapor chamber was heated at the center within a heat flux range from 100 W·cm−2 to 200 W·cm−2 with a heat sink located at the peripheral edge to induce one-dimensional radial outward heat flow. Based on the obtained results, it was found that the temperature homogenization characteristics of the vapor chamber were significantly influenced by the working fluid charge ratio combined with the applied heat flux and heat sink temperature uniformity. Thus, to improve temperature homogeneity, the vapor chamber should be operated with a proper amount of the working fluid at a high heat flux (lower than the critical value causing drying) together with a heat sink of a high-temperature uniformity. Regarding the tested vapor chamber operated at a 30% working fluid charge ratio, which produced the lowest level of temperature asymmetry, the overall effective thermal conductivity ranged from 2460 W·m−1·K−1 ± 240 W·m−1·K−1 to 2910 W·m−1·K−1 ± 290 W·m−1·K−1 at 180 W·cm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All the raw data is available (if requested).

Abbreviations

\({c}_{p}\) :

Isobaric-specific heat

\(H\) :

Thickness of the vapor chamber-type heat spreader

\({k}_{\mathrm{eff}}\) :

Effective thermal conductivity

\({r}_{\mathrm{i}}\) :

Inner radial distance from the center

\({r}_{\mathrm{o}}\) :

Outer radial distance from the center

\(\rho\) :

Density

\(\Delta {t}_{\mathrm{coolant}}\) :

Temperature change of the coolant

\(\Delta {t}_{\mathrm{radial}}\) :

Radial temperature difference between \({r}_{\mathrm{i}}\) and \({r}_{\mathrm{o}}\)

\({\dot{Q}}_{\mathrm{s}}\) :

Heat spread rate

\({\dot{V}}_{\mathrm{coolant}}\) :

Flow rate of the coolant

\(U\) :

Expanded uncertainty at approximately 95% level of confidence

References

  1. D. Xie, Y. Sun, G. Wang, S. Chen, G. Ding, Int. J. Heat Mass Transf. 175, 121132 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2021.121132

    Article  Google Scholar 

  2. H. Tang, Y. Tang, Z. Wan, J. Li, W. Yuan, L. Lu, Y. Li, K. Tang, Appl. Energy 223, 383 (2018). https://doi.org/10.1016/j.apenergy.2018.04.072

    Article  Google Scholar 

  3. X. Chen, H. Ye, X. Fan, T. Ren, G. Zhang, Appl. Therm. Eng. 96, 1 (2016). https://doi.org/10.1016/j.applthermaleng.2015.11.048

    Article  ADS  Google Scholar 

  4. A. Bar-Cohen, K. Martin, N. Jankowski, D. Sharar, J. Electron. Packag. 137, 010801 (2015). https://doi.org/10.1115/1.4028890

    Article  Google Scholar 

  5. B. Blet, S. Lips, V. Sartre, Appl. Therm. Eng. 118, 490 (2017). https://doi.org/10.1016/j.applthermaleng.2017.03.009

    Article  Google Scholar 

  6. L. Rosso, N. Koneva, V. Fernicola, Int. J. Thermophys. 30, 257 (2009). https://doi.org/10.1007/s10765-008-0495-9

    Article  ADS  Google Scholar 

  7. F. Zhou, Y. Liu, E.M. Dede, J. Heat Transf. 141, 081802 (2019). https://doi.org/10.1115/1.4043797

    Article  Google Scholar 

  8. J. Chen, J. Chou, Int. J. Heat Mass Transf. 77, 874 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2014.06.029

    Article  Google Scholar 

  9. M.T. Ababneh, S. Chauhan, P. Chamarthy, F.M. Gerner, J. Heat Transf. 136, 112901 (2014). https://doi.org/10.1115/1.4028086

    Article  Google Scholar 

  10. J. Chen, J. Chou, Int. J. Heat Mass Transf. 90, 848 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.032

    Article  Google Scholar 

  11. J. Li, L. Lv, Appl. Therm. Eng. 93, 139 (2016). https://doi.org/10.1016/j.applthermaleng.2015.09.038

    Article  ADS  Google Scholar 

  12. Z. Chen, Y. Li, W. Zhou, L. Deng, Y. Yan, Energy Conv. Manag. 187, 221 (2019). https://doi.org/10.1016/j.enconman.2019.03.038

    Article  Google Scholar 

  13. G. Wang, Z. Quan, Y. Zhou, H. Wang, Appl. Therm. Eng. 146, 459 (2019). https://doi.org/10.1016/j.applthermaleng.2018.10.014

    Article  ADS  Google Scholar 

  14. D. Lee, C. Byon, Int. J. Heat Mass Transf. 122, 306 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.135

    Article  Google Scholar 

  15. S. Cho, Y. Joshi, J. Heat Transf. 141, 051401 (2019). https://doi.org/10.1115/1.4042328

    Article  Google Scholar 

  16. D. Jafari, W.W. Wits, B.J. Geurts, Appl. Therm. Eng. 168, 114890 (2020). https://doi.org/10.1016/j.applthermaleng.2019.114890

    Article  Google Scholar 

  17. J. Velardo et al., Int. J. Therm. Sci. 140, 28 (2019). https://doi.org/10.1016/j.ijthermalsci.2019.02.009

    Article  Google Scholar 

  18. J. Velardo et al., Int. J. Heat Mass Transf. 145, 118797 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.118797

    Article  Google Scholar 

  19. M. Wang, W. Cui, Y. Hou, Appl. Therm. Eng. 153, 361 (2019). https://doi.org/10.1016/j.applthermaleng.2019.03.025

    Article  ADS  Google Scholar 

  20. C. Feng, M.J. Gibbons, M. Marengo, S. Chandra, Appl. Therm. Eng. 171, 115030 (2020). https://doi.org/10.1016/j.applthermaleng.2020.115030

    Article  Google Scholar 

  21. Y.S. Ju et al., Int. J. Heat Mass Transf. 60, 163 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.058

    Article  Google Scholar 

  22. H. P. J. de Bock et al, 2010 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (2010), p. 1. https://doi.org/10.1016/10.1109/ITHERM.2010.550132

  23. Joint Committee for Guides in Metrology (JCGM), Evaluation of measurement data—Guide to the expression of uncertainty in measurement, JCGM 100:2008 (BIPM, Paris, 2008) pp. 18–23.

  24. J. Carvill, Mechanical Engineer's Data Handbook, Butterworth-Heinemann (1993) pp. 102–145. https://doi.org/10.1016/B978-0-08-051135-1.50008-X

  25. W. Joung, K.S. Gam, Y. Kim, I. Yang, Int. J. Heat Mass Transf. 65, 460 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.05.074

    Article  Google Scholar 

  26. C. Park, W. Joung, Int. J. Heat Mass Transf. 186, 122 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2021.122472

    Article  Google Scholar 

  27. S. Lips, F. Lefevre, J. Bonjour, Int. J. Heat Mass Transf. 53, 694 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2009.10.022

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by an Electronics and Telecommunications Research Institute (ETRI) grant provided by the ICT R&D program of MSIT/IITP (21IU1240; Development of a meso-scale high-speed heat spreader based on a super heat conducting technique).

Funding

This work was supported by an Electronics and Telecommunications Research Institute (ETRI) grant provided by the ICT R&D program of MSIT/IITP (21IU1240; Development of a meso-scale high-speed heat spreader based on a super heat conducting technique).

Author information

Authors and Affiliations

Authors

Contributions

Jonghak Han performed the experiment and wrote the main manuscript, Hyuncheol Bae specified the test conditions and prepared the test devices, and Wukchul Joung wrote the main manuscript and prepared figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Wukchul Joung.

Ethics declarations

Conflict of interest

The authors declare that there are no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Bae, H. & Joung, W. Effect of the Working Fluid Charge Ratio and Heat Flux on the Temperature Homogenization Characteristics of a Vapor Chamber-Type Heat Spreader. Int J Thermophys 43, 168 (2022). https://doi.org/10.1007/s10765-022-03088-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03088-9

Keywords

Navigation