Skip to main content

Advertisement

Log in

Assessment of the Effects of Copper Oxide Nanoparticles Addition to Solar Salt: Implications for Thermal Energy Storage

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The incorporation of conductive nanoparticles into thermal energy storage media is one of the strategies to increase their thermal conductivity. This work unravels the impact of the addition of CuO nanoparticles on the thermal properties of solar salt, a high-temperature thermal energy storage material. The resultant CuO enhanced solar salt (CuOeSS) exhibited a maximum thermal conductivity improvement of 14.4 % at 40 °C when the concentration of CuO nanoparticles was 1 wt%. The prevalence of CuO nanoparticles as isolated aggregates resulted in a moderate thermal conductivity enhancement. The CuO nanoparticles greatly influenced α-KNO3 to β-KNO3 transition and reduced the expected positive influence on thermal conductivity at temperatures above 120 °C. The solid-phase specific heat was enhanced by 22.7 % for 2 wt% CuOeSS. Our results demonstrate the interplay between the different roles played by CuO nanoparticles, namely the thermal conductivity enhancement at lower temperatures and influencing the α-KNO3 to β-KNO3 transition at higher temperatures. The CuOeSS with 0.5 wt% CuO, which showed enhancement in both thermal conductivity and energy storage capacity, is a suitable energy storage material for applications in the temperature range of 100–245 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Additional data will be provided on request.

References

  1. Q. Li, C. Li, Z. Du, F. Jiang, Y. Ding, Appl. Energy 255, 113806 (2019)

    Article  Google Scholar 

  2. X. Guo, S. Zhang, J. Cao, Compos. Part A Appl. Sci. Manuf. 107, 83 (2018)

    Article  Google Scholar 

  3. Z. Yu, D. Feng, Y. Feng, X. Zhang, Compos. Part A Appl. Sci. Manuf. 152, 106703 (2022)

    Article  Google Scholar 

  4. S. Kashyap, S. Kabra, B. Kandasubramanian, J. Mater. Sci. 55, 4127 (2020)

    Article  ADS  Google Scholar 

  5. L. Abdolmaleki, U. Berardi, Single and Multi-Phase Change Materials Used in Cooling Systems (Springer, New York, 2022)

    Book  Google Scholar 

  6. Z. Sun, C. Hu, H. Ni, G. Lu, X. Song, J. Yu, Energy Technol. 6, 2065 (2018)

    Article  Google Scholar 

  7. A. Awad, H. Navarro, Y. Ding, D. Wen, Renew. Energy 120, 275 (2018)

    Article  Google Scholar 

  8. Y. Wu, J. Li, M. Wang, H. Wang, Y. Zhong, Y. Zhao, M. Wei, Y. Li, RSC Adv. 8, 19251 (2018)

    Article  ADS  Google Scholar 

  9. Y. Wu, J. Li, M. Wang, H. Wang, Y. Zhao, ChemistrySelect 4, 4521 (2019)

    Article  Google Scholar 

  10. Y. Zhang, M. Wang, J. Li, H. Wang, Y. Zhao, Sol. Energy Mater. Sol. Cells 232, 111378 (2021)

    Article  Google Scholar 

  11. D. Han, B.G. Lougou, Y. Shuai, W. Wang, B. Jiang, E. Shagdar, Sol. Energy Mater. Sol. Cells 234, 111432 (2022)

    Article  Google Scholar 

  12. M.K. Saranprabhu, K.S. Rajan, Renew. Energy 141, 451 (2019)

    Article  Google Scholar 

  13. M.K. Saranprabhu, D. Chandini, P. Bharathidasan, S. Devaraj, K.S. Rajan, Sol. Energy 204, 466 (2020)

    Article  ADS  Google Scholar 

  14. M.K. Saranprabhu, K.S. Rajan, Appl. Nanosci. 9, 2117 (2019)

    Article  ADS  Google Scholar 

  15. K. Rohini Priya, K.S. Suganthi, K.S. Rajan, Int. J. Heat Mass Transf. 55, 4734 (2012)

    Article  Google Scholar 

  16. H. Zhu, D. Han, Z. Meng, D. Wu, C. Zhang, Nanoscale Res. Lett. 6, 181 (2011)

    Article  ADS  Google Scholar 

  17. S.E. Gustafsson, Rev. Sci. Instrum. 62, 797 (1998)

    Article  ADS  Google Scholar 

  18. M. Ghalambaz, S.A.M. Mehryan, A. Hajjar, A. Veismoradi, Adv. Powder Technol. 31, 954 (2020)

    Article  Google Scholar 

  19. T. Raja Jeyaseelan, N. Azhagesan, V. Pethurajan, J. Therm. Anal. Calorim. 136, 235 (2019)

    Article  Google Scholar 

  20. Y. Huang, X. Cheng, Y. Li, D. Shi, G. Li, K. Xu, Sol. Energy Mater. Sol. Cells 188, 190 (2018)

    Article  Google Scholar 

  21. N. Burger, A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo, D. Ruch, Prog. Polym. Sci. 61, 1 (2016)

    Article  Google Scholar 

  22. A.S. Dos Santos, T.D.O.N. Leite, C.A. Furtado, C. Welter, L.C. Pardini, G.G. Silva, J. Appl. Polym. Sci. 108, 979 (2008)

    Article  Google Scholar 

  23. Z.L. Wang, H.T. Mu, J.G. Liang, D.W. Tang, Int. J. Therm. Sci. 74, 53 (2013)

    Article  Google Scholar 

  24. J.G. Park, Q. Cheng, J. Lu, J. Bao, S. Li, Y. Tian, Z. Liang, C. Zhang, B. Wang, Carbon N. Y. 50, 2083 (2012)

    Article  Google Scholar 

  25. W. Zhou, D. Yu, Q. An, Polym. Plast. Technol. Eng. 48, 1230 (2009)

    Article  Google Scholar 

  26. M. Chirtoc, N. Horny, J.F. Henry, A. Turgut, I. Kökey, I. Tavman, M. Omastová, Int. J. Thermophys. 33, 2110 (2012)

    Article  ADS  Google Scholar 

  27. H.S. Kim, J.U. Jang, J. Yu, S.Y. Kim, Compos. Part B Eng. 79, 505 (2015)

    Article  Google Scholar 

  28. Y. Luo, X. Du, A. Awad, D. Wen, Int. J. Heat Mass Transf. 104, 658 (2017)

    Article  Google Scholar 

Download references

Funding

This work was financially supported by (i) Grant No: EMR/2016/007091, Science & Engineering Research Board, DST, India, (ii) Grant No: DST/TM/SERI/FR/152(G), DST, India, and (iii) PG Teaching Grants No: SR/NM/PG-16/2007 and SR/NM/PG-04/2015 of Nano Mission Council, Department of Science & Technology (DST), India. The authors thank SASTRA Deemed University for the infrastructural support extended during the work.

Author information

Authors and Affiliations

Authors

Contributions

MKS performed conceptualization, methodology, and data curation. KSS performed data curation, writing and original draft preparation, and validation. KSR performed visualization, discussion, investigation, writing, reviewing, and Editing of the manuscript, and supervision.

Corresponding author

Correspondence to K. S. Rajan.

Ethics declarations

Competing Interests

The authors declare that they have no conflicts of interest (competing financial or personal relationships) regarding this study, the authorship, and the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saranprabhu, M.K., Suganthi, K.S. & Rajan, K.S. Assessment of the Effects of Copper Oxide Nanoparticles Addition to Solar Salt: Implications for Thermal Energy Storage. Int J Thermophys 43, 162 (2022). https://doi.org/10.1007/s10765-022-03085-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03085-y

Keywords

Navigation