Skip to main content
Log in

Feature Detection of GFRP Subsurface Defects Using Fast Randomized Sparse Principal Component Thermography

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Machine learning plays an increasingly important role in the non-destructive testing and evaluation of composites. Principal component thermography (PCT) is often used as a popular feature extraction and dimension reduction method of thermographic data. However, the ability of PCT to handle large-scale thermographic data affects the applicability of PCT for high-resolution thermographic NDT. In this paper, fast randomized sparse principal component thermography (FRSPCT) is used to detect subsurface defects of glass fiber reinforced polymer (GFRP) composites. The effectiveness of the method is demonstrated by large-scale thermographic data of GFRP with subsurface defects. Furthermore, a comprehensive quantitative comparison of the method and other state-of-the-art methods was also conducted with respect to the signal-to-noise ratio, detection rate, and runtime. The comparison results show that the FRSPCT method gives the overall highest signal-to-noise ratio, detection rate, and satisfactory runtime. In addition, the method provides more easily interpretable defect detection results and highlights the hidden details of irregularly-shaped abnormal defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. F. Wang, J. Liu, O. Mohummad, Y. Wang, Int. J. Thermophys. 39, 49 (2018)

    Article  ADS  Google Scholar 

  2. D. Palumbo, P. Cavallo, U. Galietti, NDT & E Int. 102, 254–263 (2019)

    Article  Google Scholar 

  3. C. Meola, G.M. Carlomagno, Compos. Pt. A-Appl. Sci. Manuf. 41, 1839–1847 (2010)

    Article  Google Scholar 

  4. R. Montanini, F. Freni, Compos. Pt. A-Appl. Sci. Manuf. 43, 2075–2082 (2012)

    Article  Google Scholar 

  5. C. Maierhofer, M.R. Llig, M. Gower, M. Lodeiro, G. Baker, C. Monte, A. Adibekyan, B. Gutschwager, L. Knazowicka, A. Blahut, Int. J. Thermophys. 39, 61 (2018)

    Article  ADS  Google Scholar 

  6. S. Garoushi, P.K. Vallittu, L. Lassila, Dent. Mater. 23, 1356–1362 (2007)

    Article  Google Scholar 

  7. D. Palumbo, R. De Finis, P.G. Demelio, U. Galietti, Compos. Pt. B-Eng. 103, 60–67 (2016)

    Article  Google Scholar 

  8. F. Wang, Z.Y. Yue, J.Y. Liu, H. Qi, W.J. Sun, M.J. Chen, Y. Wang, H.H. Yue, J. Appl. Phys. 131, 053101 (2022)

    Article  ADS  Google Scholar 

  9. M. Grosso, J. Lopez, V. Silva, S.D. Soares, J. Rebello, G.R. Pereira, Compos. Pt. B-Eng. 31, 014002 (2016)

    Google Scholar 

  10. F. Wang, J.Y. Liu, B.Y. Dong, J.L. Gong, W. Peng, Y. Wang, M.J. Chen, G.B. Liu, Measurement 174, 108997 (2021)

    Article  Google Scholar 

  11. M.A. Machado, K.N. Antin, L.S. Rosado, P. Vilaa, T.G. Santos, Compos. Pt. B-Eng. 224, 109167 (2021)

    Article  Google Scholar 

  12. Z. Zeng, Y. Liao, X. Liu, J. Lin, Y. Dai, IEEE Trans. Instrum. Meas. 69, 5755–5762 (2020)

    Article  Google Scholar 

  13. F. Sket, A. Enfedaque, C. Alton, C. Gonzalez, J.M. Molina-Aldareguia, J. Llorca, Compos. Sci. Technol. 90, 129–138 (2014)

    Article  Google Scholar 

  14. S. Petrò, C. Reina, G. Moroni, J. Nondestruct. Eval. 40, 1–9 (2021)

    Article  Google Scholar 

  15. S.C. Ng, N. Ismail, A. Ali, B. Sahari, J.M. Yusof, Adv. Mater. Sci. 12, 012045 (2012)

    Google Scholar 

  16. S. Wang, Z.T. Luo, P. Shen, H. Zhang, Z.H. Ni, IEEE Trans. Instrum. Meas. 71, 2502011 (2022)

    Google Scholar 

  17. L.N. Stepanova, V.V. Chernova, I.S. Ramazanov, Russ. J. Nondestr. Test. 56, 784–794 (2020)

    Article  Google Scholar 

  18. F. Yu, Y. Okabe, Compos. Struct. 238, 111992 (2020)

    Article  Google Scholar 

  19. Z.T. Luo, J. Wang, F.L. Mao, L. Shen, S. Wang, H. Zhang, J. Appl. Phys. 127, 123102 (2020)

    Article  ADS  Google Scholar 

  20. S. Hedayatrasa, G. Poelman, J. Segers, W.V. Paepegem, M. Kersemans, Mech. Syst. Signal Process. 132, 512 (2019)

    Article  ADS  Google Scholar 

  21. F. Wang, Y.H. Wang, J.Y. Liu, Y. Wang, IEEE Trans. Ind. Inf. 16, 5160–5168 (2020)

    Article  Google Scholar 

  22. Z.T. Luo, H. Luo, S. Wang, F.L. Mao, G.D. Yin, H. Zhang, Compos. Struct. 282, 115069 (2022)

    Article  Google Scholar 

  23. F. Wang, J.Y. Liu, B.Y. Dong, G.B. Liu, M.J. Chen, Y. Wang, IEEE Trans. Instrum. Meas. 70, 4505710 (2021)

    Google Scholar 

  24. Y.P. Cao, Y.F. Dong, Y.L. Cao, J.X. Yang, M.Y. Yang, NDT & E Int. 112, 102246 (2018)

    Article  Google Scholar 

  25. Y.F. Dong, C.J. Xia, J.X. Yang, Y.L. Cao, Y.P. Cao, X. Li, IEEE Trans. Ind. Informat. 18, 2571–2581 (2022)

    Article  Google Scholar 

  26. N. Tabatabaei, A. Mandelis, B.T. Amaechi, Appl. Phys. Lett. 98, 163706 (2011)

    Article  ADS  Google Scholar 

  27. N. Tabatabaei, A. Mandelis, Phys. Rev. Lett. 107, 165901 (2011)

    Article  ADS  Google Scholar 

  28. S. Kaiplavil, A. Mandelis, Nat. Photon. 8, 635 (2014)

    Article  ADS  Google Scholar 

  29. F. Wang, J.Y. Liu, L.X. Liu, L.X. Xu, Y.H. Wang, M.J. Chen, Y. Wang, Opt. Laser Eng. 149, 106830 (2022)

    Article  Google Scholar 

  30. S. Hedayatrasa, G. Poelman, J. Segers, W.V. Paepegem, M. Kersemans, Compos. Struct. 225, 111177 (2019)

    Article  Google Scholar 

  31. S. Hedayatrasa, G. Poelman, J. Segers, W.V. Paepegem, M. Kersemans, Opt. Laser Eng. 138, 106411 (2021)

    Article  Google Scholar 

  32. C.A. Alvarez-Restrepo, H.D. Benitez-Restrepo, L.E. Tobo ́n, NDT & E Int. 91, 9–21 (2017)

  33. K. Chatterjee, S. Tuli, IEEE Trans. Instrum. Meas. 61, 1079 (2012)

    Article  Google Scholar 

  34. J.F. Power, Rev. Sci. Instrum. 61, 101 (1990)

    Article  ADS  Google Scholar 

  35. J. Fivez, J. Thoen, J. Appl. Phys. 75, 7696 (1994)

    Article  ADS  Google Scholar 

  36. T.T.N. Lan, U. Seidel, H.G. Walther, J. Appl. Phys. 77, 4739 (1995)

    Article  ADS  Google Scholar 

  37. A. Mandelis, F. Funak, M. Munidasa, J. Appl. Phys. 80, 5570 (1996)

    Article  ADS  Google Scholar 

  38. C.H. Wang, A. Mandelis, H. Qu, Z.Y. Chen, J. Appl. Phys. 103, 043510 (2008)

    Article  ADS  Google Scholar 

  39. C. Glorieux, R.L. Voti, J. Thoen, M. Bertolotti, C. Sibilia, J. Appl. Phys. 85, 7059 (1999)

    Article  ADS  Google Scholar 

  40. C. Glorieux, R.L. Voti, J. Thoen, M. Bertolotti, C. Sibilia, Inverse Probl. 15, 1149–1163 (1999)

    Article  ADS  Google Scholar 

  41. R.L. Voti, C. Sibilia, M. Bertolotti, Int. J. Thermophys. 26, 1833–1848 (2005)

    Article  ADS  Google Scholar 

  42. Z.T. Luo, S. Wang, X.K. Wu, Z.H. Su, F.L. Mao, H. Zhang, In Proceedings of the 2021 Far East NDT New Technology Application Forum (FENDT), https://doi.org/10.1109/FENDT54151.2021.9749680 (2021)

  43. X. Maldague, F. Galmiche, A. Ziadi, Infrared Phys. Technol. 43, 175–181 (2002)

    Article  ADS  Google Scholar 

  44. Z.T. Luo, P. Shen, H. Luo, S. Wang, X.K. Wu, H. Zhang, J. Appl. Phys. 131, 224903 (2022)

    Article  ADS  Google Scholar 

  45. N. Rajic, Compos. Struct. 58, 521–528 (2002)

    Article  Google Scholar 

  46. F. Wang, J. Liu, P. Song, J. Gong, W. Peng, G. Liu, M. Chen, Y. Wang, Mech. Syst. Signal Proc. 163, 108164 (2022)

    Article  Google Scholar 

  47. Q. Yi, H. Malekmohammadi, G.Y. Tian, S. Laureti, M. Ricci, IEEE Trans. Ind. Inf. 16, 3963–3973 (2020)

    Article  Google Scholar 

  48. S. Marinetti, L. Finesso, E. Marsilio, NDT & E Int. 39, 611–616 (2006)

    Article  Google Scholar 

  49. J. Ahmed, B. Gao, W.L. Woo, Y. Zhu, IEEE Trans. Ind. Electron. 68, 2648–2658 (2021)

    Article  Google Scholar 

  50. J. Ahmed, B. Gao, W.L. Woo, IEEE Trans. Ind. Informat. 17, 1810–1820 (2021)

    Article  Google Scholar 

  51. X.F. Zhang, Y.Z. He, T. Chady, G.Y. Tian, J.W. Gao, H.J. Wang, S. Chen, IEEE Trans. Ind. Informat. 15, 2648–2659 (2019)

    Article  Google Scholar 

  52. H.J. Wang, N.C. Wang, Z.Y. He, Y.Z. He, IEEE Trans. Ind. Informat. 15, 2938–2946 (2019)

    Article  Google Scholar 

  53. L. Liu, B. Gao, S. Wu, J. Ahmed, Y. Yu, Infrared Phys. Technol. 107, 103288 (2020)

    Article  Google Scholar 

  54. Z.T. Luo, H. Luo, S. Wang, F. Chen, Z.H. Su, P. Shen, H. Zhang, IEEE Trans. Ind. Inf. https://doi.org/10.1109/TII.2022.3154786 (2022)

  55. J. Wu, S. Sfarra, Y. Yao, IEEE Trans. Ind. Informat. 14, 5594–5600 (2018)

    Article  Google Scholar 

  56. C. Wen, S. Sfarra, G. Gargiulo, Y. Yao, IEEE Trans. Ind. Informat. 17, 3901–3909 (2018)

    Article  Google Scholar 

  57. B. Yousefi, S. Sfarra, F. Sarasini, C.I. Castanedo, X.P.V. Maldague, Infrared Phys. Technol. 98, 278–284 (2019)

    Article  ADS  Google Scholar 

  58. Q. Luo, B. Gao, W.L. Woo, Y. Yang, NDT & E Int. 108, 102164 (2019)

    Article  Google Scholar 

  59. M. Wang, B. Gao, T. Wu, B. Hu, L. Liu, Int. J. Therm. Sci. 149, 106196 (2020)

    Article  Google Scholar 

  60. N. Halko, P.G. Martinsson, Y. Shkolnisky, M. Tygert, SIAM J. Sci. Comput. 33, 2580–2594 (2011)

    Article  MathSciNet  Google Scholar 

  61. G.H. Golub, F.T. Luk, M.L. Overton, ACM Trans. Math. Softw. 7, 149–169 (1981)

    Article  Google Scholar 

  62. O. Davydov, M. Safarpoor, Appl. Numer. Math. 161, 489–509 (2021)

    Article  MathSciNet  Google Scholar 

  63. H. Shen, J. Huang, J. Multivariate Anal. 99, 1015–1034 (2008)

    Article  MathSciNet  Google Scholar 

  64. J. Erazo-Aux, H. Loaiza-Correa, A.D. Restrepo-Giron, C. Ibarra-Castanedo, X. Maldague, Data Brief. 32, 106313 (2020)

    Article  Google Scholar 

  65. A. Hyvärinen, IEEE Trans. Neural Netw. 10, 626–634 (1999)

    Article  Google Scholar 

  66. H. Zou, T. Hastie, R. Tibshirani, J. Comput. Graph. Stat. 15, 265–286 (2006)

    Article  Google Scholar 

  67. Y.P. Liu, L.X. Chen, C. Zhu, IEEE J. Sel. Top. Signal Process. 12, 1378–1389 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 11874110), the Key R&D Program of Jiangsu Province of China (Grant No. BE2021084), the Technical Security Project of China Market Supervision Administration in 2022 (2022YJ11), and the Scientific Research Foundation of Graduate School of Southeast University (Grant No. YBPY2005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, P., Luo, Z., Wang, S. et al. Feature Detection of GFRP Subsurface Defects Using Fast Randomized Sparse Principal Component Thermography. Int J Thermophys 43, 160 (2022). https://doi.org/10.1007/s10765-022-03076-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03076-z

Keywords

Navigation