Skip to main content

Advertisement

Log in

Determination of the Effect of the Change in the Thermal Conductivity Coefficient of EPS Depending on the Density and Temperature on the Optimum Insulation Thickness

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Thermal insulation is one of the most effective techniques to save energy in terms of heating and cooling in buildings. In terms of energy savings and providing thermal comfort conditions, the insulation material chosen, and the optimum insulation thickness determined are critical. Many studies have been conducted to establish the ideal insulating thickness. The thermal conductivity coefficient (k) of the insulating material is acquired directly from standardized tables in this research, and the best insulation thickness is calculated. The k value of an insulation material varies in real-world applications based on production conditions, density, and temperature. As a result, the density of the insulation material as well as the operating temperature must be considered. As a result, when selecting the ideal insulation thickness, the density of the insulating material and the operating temperature should be considered. The insulation material employed in this investigation was expanded polystyrene foam (EPS) of various densities, and the fuel was coal and natural gas. For the province of Isparta, the optimum insulation thickness as a function of density and temperature was established using the degree-day technique based on energy costs. As a result of the calculations for the k, dry value of the insulating material for the province of Isparta, which is in the third climate zone, the optimum insulation thickness was established as 0.0428 m for EPS with a density of 30 kg⋅m−3. It has been determined that the annual savings are 52.36 % and the payback period is 2.7 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Material

Availability of data and material is clearly stated in the text.

Code Availability

Suitable.

References

  1. R.T. Oğulata, S.N. Oğulata, Solar radiation on Adana, Turkey. Appl. Energy 71(4), 351–358 (2002)

    Article  Google Scholar 

  2. G. Erdal, H. Erdal, K. Esengün, The causality between energy consumption and economic growth in Turkey. Energy Policy 36(10), 3838–3842 (2008)

    Article  Google Scholar 

  3. T.G. Özbalta, A. Sezer, Y. Yıldız, Models for prediction of daily mean indoor temperature and relative humidity: education building in Izmir, Turkey. Indoor Built Environ. 21(6), 772–781 (2012)

    Article  Google Scholar 

  4. Ö. Kaynaklı, A study on residential heating energy requirement and optimum insulation thickness. Renew. Energy 33, 1164–1172 (2008)

    Article  Google Scholar 

  5. M. Özel, Determination of optimum insulation thickness based on cooling transmission load for building walls in a hot climate. Energy Convers. Manag. 66, 106–114 (2013)

    Article  Google Scholar 

  6. A. Kürekçi, A.T. Bardakçı, H. Çubuk, Ö. Emanet, Türkiye’nin tüm illeri için optimum yalıtım kalınlığının belirlenmesi. Tesisat Mühendisliği 131, 5–21 (2012)

    Google Scholar 

  7. D.B. Özkan, C. Onan, S. Erdem, Effect of insulation material thickness on thermal insulation. Sigma 27, 190–196 (2009)

    Google Scholar 

  8. A.E. Gürel, Z. Cingiz, Farklı dış duvar yapıları için optimum ısı yalıtım kalınlığı tespitinin ekonomik analizi. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 15(1), 75–81 (2011)

    Google Scholar 

  9. TS 825, 2008. Binalarda Isı Yalıtım Kuralları Standardı, Türk Standartları Enstitüsü, Ankara.

  10. N. Sisman, E. Kahya, N. Aras, H. Aras, Determination of optimum insulation thicknesses of the external walls and roof (ceiling) for Turkey’s different degree-day regions. Energy Policy 35(10), 5151–5155 (2007)

    Article  Google Scholar 

  11. A. Bolattürk, Determination of optimum insulation thickness for building walls with respect to various fuels and climate zones in Turkey. Appl. Therm. Eng. 26, 1301–1309 (2006)

    Article  Google Scholar 

  12. A. Hasan, Optimizing insulation thickness for buildings using life cycle cost. Appl. Energy 63(2), 115–124 (1999)

    Article  Google Scholar 

  13. M.S. Mohsen, B.A. Akash, Some prospects of energy savings in buildings. Energy Convers. Manag. 42(11), 1307–1315 (2001)

    Article  Google Scholar 

  14. Bulut, H., Büyükalaca, O. and Yılmaz, T., 2007. Türkiye için Isıtma ve Soğutma Derece-Gün Bölgeleri, 16. Ulusal Isı Bilimi ve Tekniği Kongresi, Kayseri.

  15. K. Çomaklı, B. Yüksel, Environmental impact of thermal insulation thickness in buildings. Appl. Therm. Eng. 24(5–6), 933–940 (2004)

    Article  Google Scholar 

  16. Ö.A. Dombaycı, The environmental impact of optimum insulation thickness for external walls of buildings. Build. Environ. 42(11), 3855–3859 (2007)

    Article  Google Scholar 

  17. Gölcü, M., Dombaycı, Ö. A. and Abalı S., 2006. Denizli İçin Optimum Yalıtım Kalınlığının Enerji Tasarrufuna Etkisi Ve Sonuçları. Gazi Üniv. Müh. Mim. Fak. Dergisi Cilt 21(4), 639–644.

  18. Bolattürk, A., 2003. Binalarda optimum yalıtım kalınlıklarının hesabı ve enerji tasarrufundaki rolü. 14. Ulusal Isı Bilimi ve Tekniği Kongresi, 41–47.

  19. O. Arslan, R. Kose, Thermoeconomic optimization of insulation thickness considering condensed vapor in buildings. Energy Build. 38(12), 1400–1408 (2006)

    Article  Google Scholar 

  20. N. Daouas, Z. Hassen, H.B. Aissia, Analytical periodic solution for the study of thermal performance and optimum insulation thickness of building walls in Tunisia. Appl. Therm. Eng. 30(4), 319–326 (2010)

    Article  Google Scholar 

  21. J. Yu, C. Yang, L. Tian, D. Liao, A study on optimum insulation thicknesses of external walls in hot summer and cold winter zone of China. Appl. Energy 86(11), 2520–2529 (2009)

    Article  Google Scholar 

  22. Ö. Kaynaklı, M. Mutlu, M. Kılıç, Bina duvarlarına uygulanan ısıl yalıtım kalınlığının enerji maliyeti odaklı optimizasyonu. Tesisat Mühendisliği 126, 48–54 (2012)

    Google Scholar 

  23. M. Özel, M. Duranay, Farklı Yönlere Bakan Bina Duvarlarında Duvar Kalınlığı ile Yalıtım Kalınlığı Arasındaki İlişkinin Isıl Yük Seviyesi Açısından İncelenmesi. Fırat Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 17(1), 181–189 (2005)

    Google Scholar 

  24. U.T. Aksoy, Ö. Keleşoğlu, Bina Kabuğu Yüzey Alani Ve Yalitim Kalinliğinin Isitma Maliyeti Üzerinde Etkileri. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 22(1), 103–109 (2007)

    Google Scholar 

  25. M. Özel, K. Pıhtılı, Determination of optimum insulation thickness by using heating and cooling degree-day values. J. Eng. Nat. Sci 26, 191–197 (2008)

    Google Scholar 

  26. A. Ucar, F. Balo, Effect of fuel type on the optimum thickness of selected insulation materials for the four different climatic regions of Turkey. Appl. Energy 86(5), 730–736 (2009)

    Article  Google Scholar 

  27. A.E. Gürel, A. Daşdemir, Türkiye’nin dört farklı iklim bölgesinde ısıtma ve soğutma yükleri için optimum yalıtım kalınlıklarının belirlenmesi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 27(4), 346–353 (2011)

    Google Scholar 

  28. D. Karpov, O. Dyudina, M. Pavlov, A review on modern heat-insulating materials for improving the energy efficiency of buildings and life-support utilities. In E3S Web of Conferences, EDP Sciences. 288, 1099 (2021)

  29. M. Koru, Determination of thermal conductivity of closed-cell insulation materials that depend on temperature and density. Arab. J. Sci. Eng. 41(11), 4337–4346 (2016)

    Article  Google Scholar 

  30. G. Feng, Y. Feng, L. Qiu, X. Zhang, Pore scale simulation for melting of composite phase change materials considering interfacial thermal resistance. Appl. Therm. Eng. 212, 118624 (2022)

    Article  Google Scholar 

  31. L. Qiu, Y. Ouyang, Y. Feng, X. Zhang, X. Wang, J. Wu, Thermal barrier effect from internal pore channels on thickened aluminum nanofilm. Int. J. Therm. Sci. 162, 106781 (2021)

    Article  Google Scholar 

  32. L. Qiu, Y. Ma, Y. Ouyang, Y. Feng, X. Zhang, Freestanding flexible sensor based on 3 ω technique for anisotropic thermal conductivity measurement of potassium dihydrogen phosphate crystal. Sensors 21(23), 7968 (2021)

    Article  ADS  Google Scholar 

  33. L. Qiu, H. Zou, D. Tang, D. Wen, Y. Feng, X. Zhang, Inhomogeneity in pore size appreciably lowering thermal conductivity for porous thermal insulators. Appl. Therm. Eng. 130, 1004–1011 (2018)

    Article  Google Scholar 

Download references

Funding

No support was received from any organization/person.

Author information

Authors and Affiliations

Authors

Contributions

Each author contributed equally.

Corresponding author

Correspondence to Mehmet Kan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Suitable.

Consent to Participate

Suitable.

Consent for Publication

Suitable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koru, M., Korkmaz, E. & Kan, M. Determination of the Effect of the Change in the Thermal Conductivity Coefficient of EPS Depending on the Density and Temperature on the Optimum Insulation Thickness. Int J Thermophys 43, 143 (2022). https://doi.org/10.1007/s10765-022-03071-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03071-4

Keywords

Navigation