Skip to main content

Advertisement

Log in

Experimental Investigation of Nano-encapsulated Molten Salt for Medium-Temperature Thermal Storage Systems and Modeling of Neural Networks

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Molten salts were chosen as a thermal storage medium because they were best suited for medium-temperature thermal energy storage applications. Their nano-sized capsules allow for a more efficient design of thermal energy storage systems. This research work utilized the emulsification sol–gel method to synthesize two different types of nano-encapsulated phase change material (NEPCM) salts (i.e., SiO2 shell-based PCM and TiO2 shell-based PCM). The chemical structure of NEPCM salts was investigated using X-ray diffraction and Fourier transformation infrared analysis. A scanning electron microscope and a particle distribution analyzer were used to examine nanocapsules' surface morphology and size distribution. The phase change characteristics and thermal stability of the NEPCM samples were determined using simultaneous differential scanning calorimetry and thermogravimetric analyzer equipment. The activation energy (AE) of the pure PCM and NEPCM samples were calculated by the Kissinger, Ozawa, and Starink models. The artificial neural network models were developed to predict the thermophysical properties of nano-encapsulated PCM samples at different heating rates. The experimental differential scanning calorimetry outcomes are taken to train the neural networks. The optimum neural architecture is obtained at a 3-36-1 structure. This optimum neural network effectively predicts nanocapsules' thermophysical properties with higher accuracy (i.e., R2 = 0.99).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. B.S. Jinshah, B.K. Ramaraj, R.K. Kottala, S.P. Sivapirakasam, Energy Sources Part A Recover. Util. Environ. Eff. 43, 1 (2021)

    Google Scholar 

  2. B.S. Jinshah, K.R. Balasubramanian, R. Kottala, S. Divakar, Renew. Energy 181, 1046 (2022)

    Article  Google Scholar 

  3. M. Senthilkumar, K.R. Balasubramanian, R.K. Kottala, S.P. Sivapirakasam, L. Maheswari, J. Therm. Anal. Calorim. 141, 2487 (2020)

    Article  Google Scholar 

  4. S.K. Marudaipillai, B. KaruppudayarRamaraj, R.K. Kottala, M. Lakshmanan, Energy Sour. Part A Recover. Util. Environ. Eff. 2020, 1–18 (2020)

    Google Scholar 

  5. X. Ran, H. Wang, Y. Zhong, F. Zhang, J. Lin, H. Zou, Z. Dai, B. An, Sol. Energy Mater. Sol. Cells 225, 111047 (2021)

    Article  Google Scholar 

  6. F. Jiang, L. Zhang, X. She, C. Li, D. Cang, X. Liu, Y. Xuan, Y. Ding, Renew. Sustain. Energy Rev. 119, 109539 (2020)

    Article  Google Scholar 

  7. P. Moreno, L. Miró, A. Solé, C. Barreneche, C. Solé, I. Martorell, L.F. Cabeza, Appl. Energy 125, 238 (2014)

    Article  Google Scholar 

  8. V. Pethurajan, S. Suresh, A. Mojiri, A.J. Konatt, Sol. Energy Mater. Sol. Cells 206, 110308 (2020)

    Article  Google Scholar 

  9. H. Nazir, M. Batool, F.J. Bolivar-Osorio, M. Isaza-Ruiz, X. Xu, K. Vignarooban, P. Phelan, A.M. Kannan, Int. J. Heat Mass Transf. 129, 491 (2019)

    Article  Google Scholar 

  10. B. Muñoz-Sánchez, J. Nieto-Maestre, E. Veca, R. Liberatore, S. Sau, H. Navarro, Y. Ding, N. Navarrete, J.E. Juliá, Á.G. Fernández, A. García-Romero, Sol. Energy Mater. Sol. Cells 176, 357 (2018)

    Article  Google Scholar 

  11. A. Jamekhorshid, S.M. Sadrameli, M. Farid, Renew. Sustain. Energy Rev. 31, 531 (2014)

    Article  Google Scholar 

  12. F. He, X. Wang, D. Wu, Energy 67, 223 (2014)

    Article  Google Scholar 

  13. J. Li, W. Lu, Z. Luo, Y. Zeng, Sol. Energy Mater. Sol. Cells 159, 440 (2017)

    Article  Google Scholar 

  14. A. Shkatulov, R. Joosten, H. Fischer, H. Huinink, ACS Appl. Energy Mater. 3, 6860 (2020)

    Article  Google Scholar 

  15. M. Gandhi, A. Kumar, R. Elangovan, C.S. Meena, K.S. Kulkarni, A. Kumar, G. Bhanot, N.R. Kapoor, Sustainability 12, 1 (2020)

    Article  Google Scholar 

  16. Z.A. Qureshi, H.M. Ali, S. Khushnood, Int. J. Heat Mass Transf. 127, 838 (2018)

    Article  Google Scholar 

  17. G.V. Belessiotis, K.G. Papadokostaki, E.P. Favvas, E.K. Efthimiadou, S. Karellas, Energy Convers. Manag. 168, 382 (2018)

    Article  Google Scholar 

  18. M. Li, J. Liu, J. Shi, Sol. Energy 167, 158 (2018)

    Article  ADS  Google Scholar 

  19. F. Jiang, X. Wang, D. Wu, Appl. Energy 134, 456 (2014)

    Article  Google Scholar 

  20. Q. Xu, H. Liu, X. Wang, D. Wu, Energy Convers. Manag. 164, 311 (2018)

    Article  Google Scholar 

  21. Y. Zhu, S. Liang, H. Wang, K. Zhang, X. Jia, C. Tian, Y. Zhou, J. Wang, Energy Convers. Manag. 119, 151 (2016)

    Article  Google Scholar 

  22. Y. Zhu, Y. Qin, C. Wei, S. Liang, X. Luo, J. Wang, L. Zhang, Energy Convers. Manag. 164, 83 (2018)

    Article  Google Scholar 

  23. X. Wu, M. Fan, S. Cui, G. Tan, X. Shen, Sol. Energy Mater. Sol. Cells 178, 280 (2018)

    Article  Google Scholar 

  24. H. Zhang, A. Balram, H. Tiznobaik, D. Shin, S. Santhanagopalan, Appl. Therm. Eng. 136, 268 (2018)

    Article  Google Scholar 

  25. H. Zhang, D. Shin, S. Santhanagopalan, Renew. Energy 134, 1156 (2019)

    Article  Google Scholar 

  26. J. Lee, B. Jo, Mater. Lett. 268, 1 (2020)

    Google Scholar 

  27. B. Wei, C. Zou, X. Li, Int. J. Heat Mass Transf. 104, 537 (2017)

    Article  Google Scholar 

  28. W. Ji, X. Cheng, S. Chen, X. Wang, Y. Li, Powder Technol. 385, 546 (2021)

    Article  Google Scholar 

  29. J. Li, L. Li, H. Wang, X. Zhu, Y. Chen, L. Jia, Energy Technol. 8, 2000550 (2020)

    Article  Google Scholar 

  30. C. Liu, Z. Rao, J. Zhao, Y. Huo, Y. Li, Nano Energy 13, 814 (2015)

    Article  Google Scholar 

  31. G. Sukhorukov, A. Fery, H. Möhwald, Prog. Polym. Sci. 30, 885 (2005)

    Article  Google Scholar 

  32. M. Graham, J. Smith, M. Bilton, E. Shchukina, A.A. Novikov, V. Vinokurov, D.G. Shchukin (2020)

  33. A.N. Skrypnik, A.V. Shchelchkov, Y.F. Gortyshov, I.A. Popov, Appl. Therm. Eng. 206, 118049 (2022)

    Article  Google Scholar 

  34. I.O. Alade, M.O. Oyedeji, M.A.A. Rahman, T.A. Saleh, J. Therm. Anal. Calorim. 2022, 1–9 (2022)

    Google Scholar 

  35. R. Shankar, K.R. Balasubramanian, S.P. Sivapirakasam, K. Ravikumar, Mater. Today Proc. 46, 9201 (2019)

    Article  Google Scholar 

  36. K. Ravi-Kumar, K.R. Balasubramanian, B.S. Jinshah, N. Abhishek, Experimental Analysis and Neural Network Model of MWCNTs Enhanced Phase Change Materials (Springer, New York, 2022)

    Book  Google Scholar 

  37. N.H. Abu-Hamdeh, A. Golmohammadzadeh, A. Karimipour, J. Mater. Res. Technol. 10, 1184 (2021)

    Article  Google Scholar 

  38. M. Al-Naser, M. Elshafei, A. Al-Sarkhi, J. Pet. Sci. Eng. 145, 548 (2016)

    Article  Google Scholar 

  39. M. Hojjat, Appl. Math. Comput. 365, 124710 (2020)

    MathSciNet  Google Scholar 

  40. M. Sajjad Ahmad, H. Liu, H. Alhumade, M. Hussain Tahir, G. Çakman, A. Yıldız, S. Ceylan, A. Elkamel, B. Shen, Energy Convers. Manag. 221, 113173 (2020)

    Article  Google Scholar 

  41. S.R. Naqvi, R. Tariq, Z. Hameed, I. Ali, S.A. Taqvi, M. Naqvi, M.B.K. Niazi, T. Noor, W. Farooq, Fuel 233, 529 (2018)

    Article  Google Scholar 

  42. H. Bi, C. Wang, Q. Lin, X. Jiang, C. Jiang, L. Bao, Energy 213, 118790 (2020)

    Article  Google Scholar 

  43. Y. Wang, C. Ling, H. Yin, W. Liu, Z. Tang, Z. Li, Sol. Energy 204, 667 (2020)

    Article  ADS  Google Scholar 

  44. V. Muthya Goud, D. Ruben Sudhakar, J. Energy Storage 48, 103992 (2022)

    Article  Google Scholar 

  45. R. K. Kottala, B. K. Ramaraj, J. B S, V. Muthya Goud, M. Lakshmanan, Energy Sour. Part A Recover. Util. Environ. Eff. 00, 1 (2022)

  46. D. Zou, X. Liu, R. He, Li. Huang, Int. J. Heat Mass Trans. 140, 956–964 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This work is carried out at National Institute of Technology in Tiruchirappalli, Tamilnadu, India, and thankful to the institute for providing us with access to the all research and development facilities. The authors would also like to express their gratitude to Ministry of Human Resource Development, Government of India for providing a bursary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Balasubramanian.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, K.R., Balasubramanian, K.R., Kumar, G.P. et al. Experimental Investigation of Nano-encapsulated Molten Salt for Medium-Temperature Thermal Storage Systems and Modeling of Neural Networks. Int J Thermophys 43, 145 (2022). https://doi.org/10.1007/s10765-022-03069-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03069-y

Keywords

Navigation