Skip to main content
Log in

Research on Large-Area Blackbody Radiation Source for Infrared Remote Sensor Calibration

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Because of the calibration requirements of large-area infrared remote-sensing equipment, a large-area blackbody radiation source with the area of 1.05 m × 1.05 m is developed at the National Institute of Metrology (NIM), China. The temperature range of the blackbody is from room temperature to 573 K. A multiple temperature control technique is employed for improving the temperature stability and uniformity of the blackbody. The effects of the heating zone and material thickness on the temperature uniformity are investigated by thermodynamic simulation, and then the uniformity and stability of the blackbody temperature are tested. Retrieval results illustrate that the temperature uniformity of the blackbody radiation source system is less than ± 0.65 K. The temperature stability of the blackbody at all temperature points is less than 0.1 K in 10 min. The expanded combined standard uncertainty of the blackbody is 0.97 K at 373 K, 1.13 K at 473 K, and 1.53 K at 573 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.D. Lundquist, C. Chickadel, N. Cristea, W.R. Currier, B. Henn, E. Keenan, J. Dozier, Remote Sens. Environ. 209, 764–779 (2018)

    Article  ADS  Google Scholar 

  2. Y.Z. Ayanu, C. Conrad, T. Nauss, M. Wegmann, T. Koellner, Environ. Sci. Technol. 46, 8529–8541 (2012)

    Article  ADS  Google Scholar 

  3. Z. Hu, H. Hei, X. Li, F. Chen, Infrared Phys. Technol. 103, 103082 (2019)

    Article  Google Scholar 

  4. H. Zhang, C. Wang, X. Li, B. Sun, D. Jiang, Sensors 18, 3088 (2018)

    Article  ADS  Google Scholar 

  5. M.G. Mlynczak, D.J. Knipp, L.A. Hunt, J. Gaebler, T. Matsuo, L.M. Kilcommons, C.L. Young, Space Weather 16, 363–375 (2018)

    Article  ADS  Google Scholar 

  6. D.M. Szpakowski, J.L.R. Jensen, Remote Sens. 11, 2638 (2019)

    Article  ADS  Google Scholar 

  7. B. Goswami, G. Bhandari, S. Goswami, Model Earth Syst. Environ. 7, 1097–1105 (2021)

    Article  Google Scholar 

  8. J.J. Zhou, X.P. Hao, J. Song, C.Y. Xie, Y. Liu, X. Wang, Opt. Express 29, 12344–12356 (2021)

    Article  ADS  Google Scholar 

  9. R. Wielgosz, B. Calpini, Tech. Rep. (2010)

  10. S.P. Morozova, N.A. Parfentiev, B.E. Lisiansky, V.I. Sapritsky, N.L. Dovgilov, U.A. Melenevsky, B. Gutschwager, C. Monte, J. Hollandt, Int. J. Thermophys. 29, 341–351 (2008)

    Article  ADS  Google Scholar 

  11. S.P. Morozova, N.A. Parfentiev, B.E. Lisiansky, U.A. Melenevsky, B. Gutschwager, C. Monte, J. Hollandt, Int. J. Thermophys. 31, 1809–1820 (2010)

    Article  ADS  Google Scholar 

  12. C. Monte, B. Gutschwager, S.P. Morozova, J. Hollandt, Int. J. Thermophys. 30, 203–219 (2009)

    Article  ADS  Google Scholar 

  13. L. Palchetti, G. Bianchini, F. Castagnoli, Infrared Phys. Technol. 51, 207–215 (2008)

    Article  ADS  Google Scholar 

  14. X.P. Hao, J.P. Sun, L.Y. Gong, J. Song, J.M. Gu, L. Ding, Int. J. Thermophys. 39, 51 (2018)

    Article  ADS  Google Scholar 

  15. X.P. Hao, J. Song, M. Xu, J.P. Sun, L.Y. Gong, Z.D. Yuan, X.F. Lu, Int. J. Thermophys. 39, 78 (2018)

    Article  ADS  Google Scholar 

  16. X.P. Hao, J. Song, J.P. Sun, M. Xu, Z.D. Yuan, Z.L. Liu, Opt. Precis. Eng. 23, 1845–1851 (2015)

    Article  Google Scholar 

  17. X.P. Hao, J. Song, L. Ding, P. Wen, J.P. Sun, Y. Liu, Z.D. Yuan, Y.N. Duan, Y. Zhang, Metrologia 57, 065016 (2020)

    Article  ADS  Google Scholar 

  18. H. Zhang, J.M. Dai, Chin. Opt. Lett. 4, 306–308 (2006)

    ADS  Google Scholar 

  19. Z.H. Hu, C. Wang, Z.Q. Liu, Proc. SPIE 9282, 92820B-B92821 (2014)

    Google Scholar 

  20. S.Y. Lee, G.H. Kim, Y.S. Lee, G. Kim, Infrared Phys. Technol. 64, 97–102 (2014)

    Article  ADS  Google Scholar 

  21. F. Olschewski, C. Monte, A. Adibekyan, M. Reiniger, B. Gutschwager, J. Hollandt, R. Koppmann, Atmos. Meas. Tech. 11, 4757–4762 (2018)

    Article  Google Scholar 

  22. Y. Shimizu, H. Koshikawa, M. Imbe, T. Yamaki, K. Amemiya, Opt. Express 28, 22606–22616 (2020)

    Article  ADS  Google Scholar 

  23. A. Rani, R.S. Upadhyay, Y.P. Singh, Mapan 28, 91–98 (2013)

    Article  Google Scholar 

  24. R.H. Sima, X.P. Hao, J. Song, H. Qi, Z.D. Yuan, L. Ding, Y.N. Duan, IEEE Trans. Geosci. Remote 59, 6266–6276 (2021)

    Article  ADS  Google Scholar 

  25. J. Song, X.P. Hao, Z.D. Yuan, Z.L. Liu, M. Xu, L. Ding, Chin. J. Lasers 42, 0908005 (2015)

    Article  Google Scholar 

  26. Z.D. Yuan, B. Xing, C.Y. Bo, Acta Metrol. Sin. 35, 6 (2014)

    Google Scholar 

  27. J. Song, X.P. Hao, Z.D. Yuan, Z.L. Liu, L. Ding, Int. J. Thermophys. 39, 85 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (No. 12075229 and 62105317).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaopeng Hao.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Y., Hao, X., Sun, Y. et al. Research on Large-Area Blackbody Radiation Source for Infrared Remote Sensor Calibration. Int J Thermophys 43, 142 (2022). https://doi.org/10.1007/s10765-022-03067-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03067-0

Keywords

Navigation