Skip to main content
Log in

Thermal Conductivity of Dune Sand Concrete Reinforced with Pneumatic Waste Metal Fibers

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this paper, the effect of steel fibers recovered from pneumatic waste, dune sand (D), and its granulometric correction on the thermal conductivity of dune sand concrete was studied. Three types of steel fibers were used (f1, f2, and f3) having the lengths of 20 mm, 30 mm, and 40 mm, respectively, and diameters of 0.28 for f1 and f2 and 0.9 mm for f3, incorporated in the concrete with a volume fraction of 1 %. River sand (R) was used for the correction of dune sand granulometry. The proportions of 50 % D mixed with 50 % R and 40 % D mixed with 60 % R were adopted for the mixtures M2 and M3, respectively. The concretes made with only dune sand have a lower thermal conductivity, compared to the mixtures M2 and M3.The results obtained also showed that, when the concrete density decreases, the thermal conductivity decreases. The thermal conductivity of concretes without fibers is lower compared with fiber-reinforced concretes. Other parameters have an influence on this property, namely the diameter, the length, and the aspect ratio (l/d).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The datasets appeared in this study are available from the corresponding author on reasonable request.

References

  1. N. Gupta, R. Siddique, R. Belarbi, J. Clean. Prod. (2021). https://doi.org/10.1016/j.jclepro.2020.124803

    Article  Google Scholar 

  2. D. Foti, Compos. Struct. (2013). https://doi.org/10.1016/j.compstruct.2012.09.019

    Article  Google Scholar 

  3. G. Martínez-Barrera, L.I. Ávila-Córdoba, M. Martínez-López, E.S. Herrera-Sosa, E.V. Santiago, C.E. Barrera-Díaz, F. Ureña-Nuñez, N. González-Rivas, in Evolution of Ionizing Radiation Research. ed. by M. Nenoi (InTech, Rijeka, 2015), pp. 259–279

    Google Scholar 

  4. Global Tire Recycling Industry Analysis (2020) https://www.goldsteinresearch.com/report/global-tire-recycling-industry-market-trends-analysis. Accessed 04 Oct 2021

  5. W. Ferdous, A. Manalo, R. Siddique, P. Mendis, Y. Zhuge, H.S. Wong, W. Lokuge, T. Aravinthan, P. Schubel, Resour. Conserv. Recycl. (2021). https://doi.org/10.1016/j.resconrec.2021.105745

    Article  Google Scholar 

  6. D. Dobrotă, G. Dobrotă, T. Dobrescu, J Clean Prod. (2020). https://doi.org/10.1016/j.jclepro.2020.121141

    Article  Google Scholar 

  7. B. Estanqueiro, J.D. Silvestre, J. de Brito, M.D. Pinheiro, Eur. J. Environ. Civ. Eng. (2016). https://doi.org/10.1080/19648189.2016.1197161

    Article  Google Scholar 

  8. P 18-541: Aggregates - Aggregates for hydraulic concrete – Specifications (1994)

  9. I. Asadi, P. Shafigh, Z.F.B.A. Hassan, N.B. Mahyuddin, J. Build. Eng. (2018). https://doi.org/10.1016/j.jobe.2018.07.002

    Article  Google Scholar 

  10. D.J. Cook, C. Uher, Cem. Concr. Res. (1974). https://doi.org/10.1016/0008-8846(74)90001-5

    Article  Google Scholar 

  11. A.A. Adeyanju, K. Manohar, J. Miner. Mater. Char. Eng. (2011). https://doi.org/10.4236/jmmce.2011.1015111

    Article  Google Scholar 

  12. K. Liu, L. Lu, F. Wang, W. Liang, Constr. Build. Mater. (2017). https://doi.org/10.1016/j.conbuildmat.2017.05.043

    Article  Google Scholar 

  13. X. Liang, C. Wu, Int. J. Thermophys. (2018). https://doi.org/10.1007/s10765-018-2465-1

    Article  Google Scholar 

  14. M.K. Hassanzadeh-Aghdam, M.J. Mahmoodi, M. Safi, Compos. B Eng. (2019). https://doi.org/10.1016/j.compositesb.2019.106972

    Article  Google Scholar 

  15. R. Borinaga-Treviño, A. Orbe, J. Canales, J. Norambuena-Contreras, Constr. Build. Mater. (2021). https://doi.org/10.1016/j.conbuildmat.2021.122832

    Article  Google Scholar 

  16. Y. Xu, D.D.L. Chung, Cem. Concr. Res. (2000). https://doi.org/10.1016/s0008-8846(99)00206-9

    Article  Google Scholar 

  17. A. Belferrag, A. Kriker, E. Khenfer, Ann. de la Fac. des Sci. des Sci. de l’Ingénieur 1, 6–12 (2007)

    Google Scholar 

  18. A. Belferrag, A. Kriker, S. Abboudi, S.T. Bi, J. Clean. Prod. (2016). https://doi.org/10.1016/j.jclepro.2015.11.007

    Article  Google Scholar 

  19. CILAS, Ciments Lafarge Souakri (CILAS, Algeria) (2016).

  20. P 18-560: Aggregates. Particle size analysis by sieving (1990)

  21. NF EN 933-8: Tests for geometrical properties of aggregates - Part 8: Assessment of fines-Sand equivalent test (2012)

  22. NF EN 1097-6: Tests for mechanical and physical properties of aggregates - Part 6: Determination of particle density and water absorption (2014)

  23. EN 12350-3: Testing fresh concrete- Part 3: Vebe test (2019)

  24. NF EN 993-15: Test methods for dense shaped refractory products - Part 15: Determination of thermal conductivity by the hot wire method (2005)

  25. A. Belferrag, A. Kriker, M.E. Khenfer, Constr. Build. Mater. (2013). https://doi.org/10.1016/j.conbuildmat.2012.11.079

    Article  Google Scholar 

  26. J. Khedari, S. Charoenvai, J. Hirunlabh, Build. Environ. (2003). https://doi.org/10.1016/s0360-1323(02)00030-6

    Article  Google Scholar 

  27. D. Taoukil, A. El bouardi, F. Sick, A. Mimet, H. Ezbakhe, T. Ajzoul, Build. Mater. (2013). https://doi.org/10.1016/j.conbuildmat.2013.06.067

    Article  Google Scholar 

  28. W. Wang, C. Lu, Y. Li, Q. Li, Constr. Build. Mater. (2017). https://doi.org/10.1016/j.conbuildmat.2017.05.068

    Article  Google Scholar 

  29. O. Sengul, S. Azizi, F. Karaosmanoglub, M.A. Tasdemir, Energy Build. (2011). https://doi.org/10.1016/j.enbuild.2010.11.008

    Article  Google Scholar 

  30. D.S. Smith, S. Fayette, S. Grandjean, C. Martin, R. Telle, T. Tonnessen, J. Am. Ceram. Soc. (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03285.x

    Article  Google Scholar 

  31. A. Demain, J.-P. Issi, J. Compos. Mater. (1993). https://doi.org/10.1177/002199839302700702

    Article  Google Scholar 

  32. S. Elfordy, F. Lucas, F. Tancret, Y. Scudeller, L. Goudet, Constr. Build. Mater. (2008). https://doi.org/10.1016/j.conbuildmat.2007.07.016

    Article  Google Scholar 

  33. R. Demirboga, A. Kan, Constr. Build. Mater. (2012). https://doi.org/10.1016/j.conbuildmat.2012.04.105

    Article  Google Scholar 

  34. A.M. Jalilluddin, S.M. Ayop, K. Kamaruddin, Adv. Mater. Res. (2013). https://doi.org/10.4028/www.scientific.net/AMR.626.485

    Article  Google Scholar 

  35. A.A. Sayadi, J.V. Tapia, T.R. Neitzert, G.C. Clifton, Constr. Build. Mater. (2016). https://doi.org/10.1016/j.conbuildmat.2016.02.218

    Article  Google Scholar 

  36. M. Bravo, J. de Brito, L. Evangelista, Appl. Sci. (2017). https://doi.org/10.3390/app7070740

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AB contributed to conceptualization, methodology, formal analysis, investigation, writing of the original draft, and writing, reviewing, & editing of the manuscript. AK contributed to supervision and conceptualization. YF contributed to writing of the original draft, writing, reviewing, & editing of the manuscript, and visualization. SA contributed to writing, reviewing, & editing of the manuscript, and methodology. STB contributed to writing, reviewing, and editing of the manuscript.

Corresponding author

Correspondence to Allaoua Belferrag.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belferrag, A., Kriker, A., Youcef, F. et al. Thermal Conductivity of Dune Sand Concrete Reinforced with Pneumatic Waste Metal Fibers. Int J Thermophys 43, 140 (2022). https://doi.org/10.1007/s10765-022-03065-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03065-2

Keywords

Navigation