Skip to main content

Advertisement

Log in

Non-contact Steady-State Thermal Characterization of Lithium-Ion Battery Plates Using Infrared Thermography

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Along with the widespread adoption of lithium-ion batteries (LIBs) as one of the main power sources in electric vehicles, temperature control of battery cells and battery modules becomes an important issue attracting much attention. The knowledge of thermal properties of LIB components and interfaces between layers in the stacked structure inside the battery cell will be helpful for accurate predicting the outward heat dissipation of a battery cell. Here presents a new non-contact steady-state method for quickly measuring the thermal conductivity of the sub-millimeter thick active layer and thermal contact resistance between the active layer and the current collector of electrode plates. A control sample with known thermal properties is employed to eliminate the unknown heating power and possible errors induced in parameter calculation, and the thermal conductivity is then quickly determined to be 2.34 W·(m−1·K−1) for the positive plate and 1.26 W·(m−1·K−1) for the negative plate of an 18,650 lithium-ion battery with an experimental error of 12.2 %. Also, the thermal contact resistance is extrapolated from the residue thermal resistance of the electrode plate against the thickness and determined to be 1.57 × 10–5 m2·K·W−1 with a fitting uncertainty of ± 0.62 × 10–5 m2·K·W−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. S. Wijewardana, R. Vepa, M.H. Shaheed, J. Power Sources 308, 109–120 (2016)

    Article  ADS  Google Scholar 

  2. A. Ritchie, W. Howard, J. Power Sources 162, 809–812 (2006)

    Article  ADS  Google Scholar 

  3. Z. Ling, F. Wang, X. Fang, X. Gao, Z. Zhang, Appl. Energy 148, 403–409 (2015)

    Article  Google Scholar 

  4. Y. Ye, L.H. Saw, Y. Shi, A.A.O. Tay, Appl. Therm. Eng. 86, 281–291 (2015)

    Article  Google Scholar 

  5. D. Bernardi, E. Pawlikowski, J. Newman, J. Electrochem. Soc. 132, 5–12 (1985)

    Article  ADS  Google Scholar 

  6. Y. Saito, K. Kanari, K. Takano, J. Power Sources 68, 451–454 (1997)

    Article  ADS  Google Scholar 

  7. N. Sato, J. Power Sources 99, 70–77 (2001)

    Article  ADS  Google Scholar 

  8. V. Srinivasan, C.Y. Wang, J. Electrochem. Soc. 150, A98–A106 (2002)

    Article  Google Scholar 

  9. Y. Abdul-Quadir, P. Heikkilä, T. Lehmuspelto, J. Karppinen, T. Laurila, M. Paulasto-Kröckel. Thermal investigation of a battery module for work machines. in 2011 12th Intl. Conf. on Thermal, Mechanical & Multi-physics Simulation and Experiments in Microelectronics and Microsystems (2011).

  10. J. Xun, R. Liu, K. Jiao, J. Power Sources 233, 47–61 (2013)

    Article  Google Scholar 

  11. L. Song, Y. Chen, J.W. Evans, J. Electrochem. Soc. 144, 3797–3800 (1997)

    Article  ADS  Google Scholar 

  12. H. Maleki, S.A. Hallaj, J.R. Selman, R.B. Dinwiddie, H. Wang, J. Electrochem. Soc. 146, 947–954 (1999)

    Article  ADS  Google Scholar 

  13. E. Barsoukov, J.H. Jang, H. Lee, J. Power Sources 109, 313–320 (2002)

    Article  ADS  Google Scholar 

  14. M. Fleckenstein, S. Fischer, O. Bohlen, B. Bäker, J. Power Sources 223, 259–267 (2013)

    Article  Google Scholar 

  15. G. Vertiz, M. Oyarbide, H. Macicior, O. Miguel, I. Cantero, P. Fernandez de Arroiabe, I. Ulacia, J. Power Sources 272, 476–484 (2014)

    Article  ADS  Google Scholar 

  16. S.J. Bazinski, X. Wang, J. Power Sources 293, 283–291 (2015)

    Article  ADS  Google Scholar 

  17. B. Abad, D.A. Borca-Tasciuc, M.S. Martin-Gonzalez, Renew. Sustain. Energy Rev. 76, 1348–1370 (2017)

    Article  Google Scholar 

  18. J. Liu, M. Han, R. Wang, S. Xu, X. Wang, J. Appl. Phys. 131, 065107 (2022)

    Article  ADS  Google Scholar 

  19. Y.X. Wang, J.Y. Park, Y.K. Koh, D.G. Cahill, J. Appl. Phys. 108, 043507 (2010)

    Article  ADS  Google Scholar 

  20. P. Jiang, X. Qian, R. Yang, Rev. Sci. Instrum. 88, 074901 (2017)

    Article  ADS  Google Scholar 

  21. A.J. Schmidt, R. Cheaito, M. Chiesa, Rev. Sci. Instrum. 80, 094901 (2009)

    Article  ADS  Google Scholar 

  22. Y. Wang, V. Chauhan, Z. Hua, R. Schley, C.A. Dennett, D. Murray, M. Khafizov, G. Beausoleil, D.H. Hurley, Int. J. Thermophys. 43, 53 (2022)

    Article  ADS  Google Scholar 

  23. T. Ishizaki, T. Kawahara, K. Tomioka, S. Tanaka, N. Sakatani, T. Nakamura, H. Nagano, Int. J. Thermophys. 43, 97 (2022)

    Article  ADS  Google Scholar 

  24. M. Sheindlin, D. Halton, M. Musella, C. Ronchi, Rev. Sci. Instrum. 69, 1426–1436 (1998)

    Article  ADS  Google Scholar 

  25. T. Wang, X. Wang, Y. Zhang, L. Liu, L. Xu, Y. Liu, L. Zhang, Z. Luo, K. Cen, J. Appl. Phys. 104, 013528 (2008)

    Article  ADS  Google Scholar 

  26. X. Wang, Z. Zhong, J. Xu, J. Appl. Phys. 97, 064302 (2005)

    Article  ADS  Google Scholar 

  27. S. Xu, X. Wang, AIP Adv. 4, 107122 (2014)

    Article  ADS  Google Scholar 

  28. S. Xu, Z. Xu, J. Starrett, C. Hayashi, X. Wang, Polymer 55, 1845–1853 (2014)

    Article  Google Scholar 

  29. O.A. Sergeev, A.G. Shashkov, A.S. Umanskii, J. Eng. Phys. 43, 1375–1383 (1982)

    Article  Google Scholar 

  30. Y. Chen, J.W. Evans, J. Electrochem. Soc. 143, 2708–2712 (1996)

    Article  ADS  Google Scholar 

  31. F.P. Incropera, D.P. DeWitt, T.L. Bergman, A.S. Lavine, Fundamentals of Heat and Mass Transfer, 6th edn. (Wiley, Hoboken, 2007)

    Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (No. 52106220 for S. X.) and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (for S. X.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen Xu.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Xu, S., Wang, Y. et al. Non-contact Steady-State Thermal Characterization of Lithium-Ion Battery Plates Using Infrared Thermography. Int J Thermophys 43, 131 (2022). https://doi.org/10.1007/s10765-022-03058-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03058-1

Keywords

Navigation