Skip to main content
Log in

Experimental Determination and Correlation of Density, Viscosity, and Saturated Vapor Pressure Data of Various Methylsuccinic Acid Esters

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Researchers are forced to find alternative bio-based sources to produce fine chemicals due to the growing consumption and depletion of fossil resources. Methylsuccinic acid esters represent an exciting group of substances that could find potential in several areas of the chemical industry, such as polymers' production or a replacement of phthalates in plasticizers. Density, viscosity, and saturated vapor pressure are the fundamental properties for process simulations relating to the production of these compounds. 4 methylsuccinic acid esters with the commercial potential were studied in this paper—dimethyl methylsuccinate, diethyl methylsuccinate, di-n-propyl methylsuccinate, and di-n-butyl methylsuccinate. The presented data were experimentally determined, compared to the previously published data, if possible, and subsequently fitted by a relevant model for each property in Aspen Plus simulation software. The conformity between the experimental and calculated data were determined by values of average absolute deviation. The basic knowledge about these physical–chemical properties will be helpful in future process simulations and development in producing these esters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

IA:

Itaconic acid

MSA:

Methylsuccinic acid

PBMS:

Poly(butylene-2-methyl succinate)

DMMS:

Dimethyl methylsuccinate

DEMS:

Diethyl methylsuccinate

DPMS:

Di-n-propyl methylsuccinate

DBMS:

Di-n-butyl methylsuccinate

MAD:

Mean absolute deviation

AAD:

Average absolute deviation

References

  1. T. Werpy, G. Petersen, Top Value Added Chemicals from Biomass (the Pacific Northwest National Library and the National Renewable Energy Laboratory, 2004) https://www.nrel.gov/docs/fy04osti/35523.pdf. Accessed 23 Jan 2021

  2. B. Cornils, P. Lappe, Ullmann’s Encyclopedia of Industrial Chemistry (Wiley, Weinhein, 2014)

    Google Scholar 

  3. J.T. Trotta, A. Watts, A.R. Wong, A.M. LaPointe, M.A. Hillmyer, B.P. Fors, ACS Sustain. Chem. Eng. 7, 2691 (2019)

    Article  Google Scholar 

  4. B.C. Saha, G.J. Kennedy, N. Qureshi, M.J. Bowman, Biotechnol. Prog. 33, 1059 (2017)

    Article  Google Scholar 

  5. J.C. De Carvalho, A.I. Magalhaes Jr., Soccol. C. R. Chim. Oggi 36, 56 (2018)

    Google Scholar 

  6. T. Klement, J. Buechs, Bioresour. Technol. 135, 422 (2013)

    Article  Google Scholar 

  7. A. Kuenz, Y. Gallenmueller, T. Willke, K.-D. Vorlop, Appl. Microbiol. Biotechnol. 96, 1209 (2012)

    Article  Google Scholar 

  8. W.E. Levinson, C.P. Kurtzman, T.M. Kuo, Enzyme Microb. Technol. 39, 824 (2006)

    Article  Google Scholar 

  9. N. Maassen, M. Panakova, N. Wierckx, E. Geiser, M. Zimmermann, M. Boelker, U. Klinner, L.M. Blank, Eng. Life Sci. 14, 129 (2014)

    Article  Google Scholar 

  10. X. Huang, X. Lu, Y. Li, X. Li, J.-J. Li, Microb. Cell Fact. 13, 119 (2014)

    Article  Google Scholar 

  11. Y. Liu, G. Liu, J. Zhang, V. Balan, J. Bao, Biomass Convers. Biorefin. 10, 463 (2020)

    Article  Google Scholar 

  12. F.J. Holzhäuser, J. Artz, S. Palkovits, D. Kreyenschulte, J. Büchs, R. Palkovits, Green Chem. 19, 2390 (2017)

    Article  Google Scholar 

  13. R. Luque, J.H. Clark, Catal. Commun. 11, 928 (2010)

    Article  Google Scholar 

  14. D. Mijolovic, Z. J. Szarka, J. Heimann, S. Garnier, DE102011080722 (2012)

  15. L. Wu, M. Mascal, T.J. Farmer, S.P. Arnaud, M.-A. WongChang, ChemSusChem 10, 166 (2017)

    Article  Google Scholar 

  16. T. Xie, C. Gao, C. Wang, S.E. Shen, Y. Wu, Polym.-Plast. Technol. Eng. 53, 465 (2014)

    Article  Google Scholar 

  17. J. Han, J. Shi, Z. Xie, J. Xu, B. Guo, Materials 12, 1507 (2019)

    Article  ADS  Google Scholar 

  18. H. Richard, B. Muller, WO2012119861 (2012)

  19. J. Trejbal, M. Zapletal, A. Obuchov, T. Sommer, Int. J. Thermophys. 43, 51 (2022)

    Article  ADS  Google Scholar 

  20. G. H. Jeffery, A. I. Vogel, J. Chem. Soc. 658 (1948)

  21. J.W. Brühl, R. Braunschweig, J. Prakt. Chem. 47, 274 (1893)

    Article  Google Scholar 

  22. P.A. Meerburg, Recl. Trav. Chim. Pays-Bas 18, 367 (1899)

    Article  Google Scholar 

  23. W. Ipatiew, G. Rasuwajew, Ber. Dtsch. Chem. Ges. 59, 2031 (1926)

    Article  Google Scholar 

  24. W.H. Perkin, J. Chem. Soc. Trans. 45, 421 (1884)

    Article  Google Scholar 

  25. N.A. Preobrazhenskii, M.E. Maurit, G.I. Bazilevskaya, G.V. Smirnova, M.M. El’manovich, A.I. Valakhanovich, E. Persiyanova, Zh. Obshch, Khim. 30, 2250 (1960)

    Google Scholar 

  26. K.V. Auwers, B. Ottens, Ber. Dtsch. Chem. Ges. 57, 437 (1924)

    Article  Google Scholar 

  27. G. Natta, P. Pino, E. Mantica, Gazz. Chim. Ital. 80, 680 (1950)

    Google Scholar 

  28. R. Rossi, P. Diversi, G. Ingrosso, Gazz. Chim. Ital. 98, 1391 (1968)

    Google Scholar 

  29. M. S. Adjangba, Bull. Soc. Chim. Fr. 1942 (1963)

  30. F. Echalier, O. Constant, J. Bolte, J. Org. Chem. 58, 2747 (1993)

    Article  Google Scholar 

  31. Y. Murakami, Y. Hisaeda, T. Ozaki, T. Tashiro, T. Ono, Y. Tani, Y. Matsuda, Bull. Chem. Soc. Jpn. 60, 311 (1987)

    Article  Google Scholar 

  32. M. Qudrat-i-Khuda, S.K. Ghosh, J. Indian Chem. Soc. 17, 19 (1940)

    Google Scholar 

  33. B. Wojcik, H. Adkins, J. Am. Chem. Soc. 56, 2424 (1934)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contribution of Martin Zapletal, Jiří Pokorný, Jiří Trejbal, and Tomáš Sommer.

Corresponding author

Correspondence to Tomáš Sommer.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests. All authors have approved the final version of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 427 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zapletal, M., Pokorný, J., Trejbal, J. et al. Experimental Determination and Correlation of Density, Viscosity, and Saturated Vapor Pressure Data of Various Methylsuccinic Acid Esters. Int J Thermophys 43, 120 (2022). https://doi.org/10.1007/s10765-022-03047-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03047-4

Keywords

Navigation