Skip to main content

Advertisement

Log in

Prediction of the Thermal Conductivity of H2/CO2/CO/CH4/H2O Mixtures at High Temperatures and High Pressures Based on the Extended Corresponding States Principle

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

An improved extended corresponding states principle for predicting the thermal conductivity of H2/CO2/CO/CH4/H2O mixture is presented. The model uses hydrogen as a reference fluid and employs shape factors and a density-modified parameter. Calculations for the thermal conductivity require only critical constants, molecular weight, the ideal gas heat capacity, the dilute gas viscosity, and mole fraction for each mixture component as input. The model was tested for pure fluids, binary hydrogen-containing mixtures, a binary non-hydrogen-containing mixture, and quinary mixtures at temperature up to 915 K. The average absolute deviation between experiments and predictions is less than 4.52 %. The present model is suitable for prediction at temperatures lower than 1000 K and pressures lower than 20 MPa with an uncertainty of 6.12 % (k = 2), which is necessary for the implementation of hydrogen generation systems and has potential to be applied to more species and mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Ursua, L.M. Gandia, P. Sanchis, Proc. IEEE 100, 410 (2011)

    Article  Google Scholar 

  2. J.A. Medrano, V. Spallina, M.V. Annaland, F. Gallucci, Int. J. Hydrogen Energy. 39, 4725 (2014)

    Article  Google Scholar 

  3. W. Chen, R. Xu, Energy Pol. 38, 2123 (2010)

    Article  Google Scholar 

  4. Y. Gong, Q. Zhang, Q. Guo, Z. Xue, F. Wang, G. Yu, Appl. Energy. 206, 1184 (2017)

    Article  Google Scholar 

  5. L. Guo, H. Jin, Y. Lu, Fluids. 96, 144 (2015)

    Google Scholar 

  6. L. Guo, H. Jin, Int. J. Hydrogen Energy. 38, 12953 (2013)

    Article  Google Scholar 

  7. X. Zhao, H. Jin, Int. J. Heat Mass Transf. 133, 718 (2019)

    Article  Google Scholar 

  8. F. Li, W. Ma, H. Jin, X. Zhang, L. Guo, Int. J. Heat Mass Transf. 177, 121554 (2021)

    Article  Google Scholar 

  9. S.T.H. Weber, Ann Phys. 54, 481 (1917)

    Article  Google Scholar 

  10. T.L. Ibbs, A.A. Hirst, Proc. R. Soc. Lond. 123, 134 (1929)

    ADS  Google Scholar 

  11. G. Kornfeld, K. Hilferding, Phys Chem. 1931A, 792 (1931)

    Google Scholar 

  12. J. Kestin, S.T. Ro, W.A. Wakeham, Physica A. 119, 615 (1983)

    Article  ADS  Google Scholar 

  13. P. Mukhopadhyay, A.D. Gupta, A.K. Barua, Br. J. Appl. Phys. 18, 1301 (1967)

    Article  ADS  Google Scholar 

  14. F. Li, F. Shang, S. Cheng, W. Ma, H. Jin, X. Zhang, L. Guo, Int. J. Hydrogen Energy. 45, 31213 (2020)

    Article  Google Scholar 

  15. X. Yang, C. Duan, J. Xu, Y. Liu, B. Cao, Int. J. Heat Mass Transf. 135, 413 (2019)

    Article  Google Scholar 

  16. H. Cheung, L.A. Bromley, C.R. Wilke, A.I.Ch.E Journal 8, 221 (1962)

    Article  Google Scholar 

  17. E.A. Mason, S.C. Saxena, J. Chem. Phys. 31, 511 (1959)

    Article  ADS  Google Scholar 

  18. J.O. Hirschfelder, Sixth Symposium on Combustion. Reinhold Publication Corporation, New York. 351 (1957)

  19. E.A. Mason, S.C. Saxena, Phys. Fluids. 1, 361 (1958)

    Article  MathSciNet  ADS  Google Scholar 

  20. F.G. Keyes, C. Mass, Trans. Am. Soc. Mech. Eng. 74, 1303 (1952)

    Google Scholar 

  21. A.A. Westenberg, N. DeHaas, Phys. Fluids 5, 266 (1962)

    Article  ADS  Google Scholar 

  22. D. Cook, J.S. Rowlinson, Proc. Math. Eng. Sci. (Lond.) A. 219, 405 (1953)

    Google Scholar 

  23. J.F. Ely, H.J.M. Hanley, Ind. Eng. Chem. Res. 22, 90 (1983)

    Article  Google Scholar 

  24. J.W. Leach, Ph.D. Thesis, Rice University (1967)

  25. J.W. Leach, P.S. Chappelear, T.W. Leland, AIChE J. 14, 568 (1968)

    Article  Google Scholar 

  26. P.M. Mathias, V.S. Parekh, E.J. Miller, Ind. Eng. Chem. Res. 41, 989 (2002)

    Article  Google Scholar 

  27. J.F. Estela-Uribe, A. De Mendoza, J.P.M. Trusler, Fluid Phase Equilib. 216, 59 (2004)

    Article  Google Scholar 

  28. J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, Molecular theory of gases and liquids (1964)

  29. J.W. Leachman, R.T. Jacobsen, S.G. Penoncello, E.W. Lemmon, J. Phys. Chem. Ref. Data 38, 721 (2009)

    Article  ADS  Google Scholar 

  30. S. Moroe, P.L. Woodfield, K. Kimura, M. Kohno, J. Fukai, M. Fujii, K. Shinzato, Y. Takata, Int. J. Thermophys. 32, 1887 (2011)

    Article  ADS  Google Scholar 

  31. M.L. Huber, D.G. Friend, J.F. Ely, Fluid Phase Equilib. 80, 249 (1992)

    Article  Google Scholar 

  32. R.C. Reid, J.M. Prausnitz, B.E. Poling, The Properties of Gases and Liquids (1987)

  33. T.H. Chung, M. Ajlan, L.L. Lee, K.E. Starling, Ind. Eng. Chem. Res. 27, 671 (1988)

    Article  Google Scholar 

  34. C.C. Li, AIChE J. 22, 927 (1976)

    Article  Google Scholar 

  35. C.Y. Tsang, W.B. Street, Chem. Eng. Sci. 36, 993 (1981)

    Article  Google Scholar 

  36. S. Murad, K.E. Gubbins, Chem. Eng. Sci. 32, 499 (1977)

    Article  Google Scholar 

  37. B.G. Kyle, Chemical and Process Thermodynamics (Prentice Hall, Englewood Cliffs, 1984), pp. 495–496

    Google Scholar 

  38. C.D. Muzny, M.L. Huber, A.F. Kazakov, J. Chem. Eng. Data. 58, 969 (2013)

    Article  Google Scholar 

  39. A. Fenghour, W.A. Wakeham, V. Vesovic, J. Phys. Chem. Ref. Data. 27, 31 (1998)

    Article  ADS  Google Scholar 

  40. R. Span, W. Wagner, J. Phys. Chem. Ref. Data. 25, 1509 (1996)

    Article  ADS  Google Scholar 

  41. A.A. Clifford, P. Gray, A.C. Scott, J. Chem. Soc. Faraday Trans. 1, 875 (1975)

    Article  Google Scholar 

  42. R.D. Goodwin, J. Phys. Chem. Ref. Data. 14, 849 (1985)

    Article  ADS  Google Scholar 

  43. D.G. Friend, J.F. Ely, H. Ingham, J. Phys. Chem. Ref. Data. 18, 583 (1989)

    Article  ADS  Google Scholar 

  44. U. Setzmann, W. Wagner, J. Phys. Chem. Ref. Data. 20, 1061 (1991)

    Article  ADS  Google Scholar 

  45. M.L. Huber, R.A. Perkins, A. Laesecke, D.G. Friend, J.V. Sengers, M.J. Assael, I.N. Metaxa, E. Vogel, R. Mareš, K. Miyagawa, J. Phys. Chem. Ref. Data. 38, 101 (2009)

    Article  ADS  Google Scholar 

  46. W. Wagner, A. Pruss, J. Phys. Chem. Ref. Data. 31, 387 (2002)

    Article  ADS  Google Scholar 

  47. NIST Chemistry WebBook, NIST Standard Reference Database Number, 69, National Institute of Standards and Technology, Gaithersburg (2005)

  48. NIST Chemistry WebBook, https://webbook.nist.gov/chemistry/

  49. M.L. Huber, E.A. Sykioti, M.J. Assael, R.A. Perkins, J. Phys. Chem. Ref. Data. 45, 013102 (2016)

    Article  ADS  Google Scholar 

  50. M.L. Huber, R.A. Perkins, D.G. Friend, J.V. Sengers, M.J. Assael, I.N. Metaxa, K. Miyagawa, R. Hellmann, E. Vogel, J. Phys. Chem. Ref. Data. 41, 033102 (2012)

  51. M.L. Huber, Models for the Viscosity, (Thermal Conductivity, and Surface Tension of Selected Pure Fluids as Implemented in REFPROP v10.0, NIST Interagency/Internal Report (NISTIR) - 8209, NIST, Boulder, Colorado, 2018), pp. 192–194.

  52. J. Millat, M. Mustafa, M. Ross, W.A. Wakeham, M. Zalaf, Physica A 145, 461 (1987)

    Article  ADS  Google Scholar 

  53. A.C. Scott, A.I. Johns, J.T.R. Watson, A.A. Clifford, J. Chem. Soc. 79, 733 (1983)

    Google Scholar 

  54. R.G. Vines, J. Heat Transfer. 82, 48 (1960)

    Article  Google Scholar 

  55. K.N. Haran, G.C. Maitland, M. Mustafa, W.A. Wakeham, Ber. Bunsenges. Phys. Chem. 87, 657 (1983)

    Article  Google Scholar 

  56. A.K. Barua, A.D. Gupta, P. Mukhopadhyay, Int. J. Heat Mass Transf. 12, 587 (1969)

    Article  Google Scholar 

  57. J. Pátek, J. Klomfar, Fluid Phase Equilib. 198, 147 (2002)

    Article  Google Scholar 

  58. K.I. Amirkhanov, A.P. Adamov, U.B. Magomedov, J. Eng. Thermophys. 34, 141 (1978)

    Google Scholar 

  59. J. Pátek, J. Klomfar, L. Čapla, P. Buryan, Int. J. Thermophys. 26, 577 (2005)

    Article  ADS  Google Scholar 

  60. ISO/IEC Guide. (Uncertainty of Measurement—Part 3: Guide to the Expression of Uncertainty in Measurement. Switzerland: Geneva, 2008).

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52130602, 51827807).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Ma, W. & Zhang, X. Prediction of the Thermal Conductivity of H2/CO2/CO/CH4/H2O Mixtures at High Temperatures and High Pressures Based on the Extended Corresponding States Principle. Int J Thermophys 43, 121 (2022). https://doi.org/10.1007/s10765-022-03044-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03044-7

Keywords

Navigation