Skip to main content

Advertisement

Log in

Melting and Solidification Behaviour of Some Organic Phase Change Materials Applicable to Low Temperature Heat Storage Applications

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The objective of the proposed work is to investigate the suitability of selected organic phase change materials (PCMs) based on their melting and solidification behaviour for low-temperature heat storage applications. The selection is carried out as per the melting point, latent heat, ease of availability and cost. The selected PCMs are lauric acid (LA), myristic acid (MA), stearic acid (SA), paraffin wax (PW) and palmitic acid (PA). Thermophysical properties viz. melting point, latent heat, thermal conductivity, viscosity, thermal expansion coefficient and density of the selected PCMs are measured and tabulated. Based on the thermophysical properties and phase change phenomena the suitability of the PCMs for latent heat storage system (LHSS) is explored. Both constrained and un-constrained melting of short-listed PCMs are examined. For comparative analysis, experiments are conducted at three different temperatures of 70 °C, 80 °C and 90 °C. The experimental results are presented in both graphical and tabular forms which include melt fraction rate, solid fraction rate, absorbed energy fraction and released energy fraction. From the obtained results, the incremental order of total melting time of the selected PCMs are observed to be LA, MA, SA, PW and PA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\({C}_{p}\) :

Specific heat (J·kg−1·K−1)

\(g\) :

Gravitational acceleration (m·s−2)

\(L\) :

Latent heat (J·kg−1)

\(m\) :

Mass (kg)

\(Q\) :

Total heat transferred into the spherical container (kJ)

R:

Radius of the sphere (m)

T:

Temperature (K)

U:

Uncertainty

V:

Volume (m3)

Z:

Dependent variable

\(\alpha\) :

Thermal diffusivity of liquid (m2·s−1)

\(\beta\) :

Thermal expansion coefficient (K−1)

\(\mu\) :

Dynamic viscosity (kg·m−1·s−1)

\(\rho\) :

Density (kg·m−3)

σ:

Standard deviation

avg:

Average

i:

Initial

L:

Liquid

m:

Melting

s:

Solid

f:

Fraction

T:

Total

on:

Onset

PCM:

Phase change material

LHSS:

Latent heat storage system

References

  1. Y.B. Tao, Y.-L. He, A review of phase change material and performance enhancement method for latent heat storage system. Renew. Sustain. Energy Rev. 93, 245–259 (2018). https://doi.org/10.1016/j.rser.2018.05.028

    Article  Google Scholar 

  2. Z. Zhou, J. Liu, C. Wang, X. Huang, F. Gao, S. Zhang, B. Yu, Research on the application of phase-change heat storage in centralized solar hot water system. J. Clean. Prod. 198, 1262–1275 (2018). https://doi.org/10.1016/j.jclepro.2018.06.281

    Article  Google Scholar 

  3. P.W. Griffiths, M.J. Huang, M. Smyth, Improving the heat retention of integrated collector/storage solar water heaters using phase change materials slurries. Int. J. Ambient Energy 28, 89–98 (2007). https://doi.org/10.1080/01430750.2007.9675029

    Article  Google Scholar 

  4. E. van Galen, G.J. van den Brink, Energy storage in phase change materials for solar applications. Int. J. Ambient Energy 7, 31–46 (1986). https://doi.org/10.1080/01430750.1986.9675474

    Article  Google Scholar 

  5. A. Sharma, V.V. Tyagi, C.R. Chen, D. Buddhi, Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 13, 318–345 (2009). https://doi.org/10.1016/j.rser.2007.10.005

    Article  Google Scholar 

  6. P.B. Salunkhe, D. Jaya Krishna, Investigations on latent heat storage materials for solar water and space heating applications. J. Energy Storage 12, 243–260 (2017). https://doi.org/10.1016/j.est.2017.05.008

    Article  Google Scholar 

  7. I. Sarbu, A. Dorca, Review on heat transfer analysis in thermal energy storage using latent heat storage systems and phase change materials. Int. J. Energy Res. 43, 29–64 (2018). https://doi.org/10.1002/er.4196

    Article  Google Scholar 

  8. B. Zalba, J.M. Marin, L.F. Cabeza, H. Mehling, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl. Therm. Eng. 23, 251–283 (2003). https://doi.org/10.1016/S1359-4311(02)00192-8

    Article  Google Scholar 

  9. G. Wei, G. Wang, C. Xu, X. Ju, L. Xing, X. Du, Y. Yang, Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: a review. Renew. Sustain. Energy Rev. 81, 1771–1786 (2018). https://doi.org/10.1016/j.rser.2017.05.271

    Article  Google Scholar 

  10. L. Kalapala, J.K. Devanuri, Influence of operational and design parameters on the performance of a PCM based heat exchanger for thermal energy storage—a review. J. Energy Storage 20, 497–519 (2018). https://doi.org/10.1016/j.est.2018.10.024

    Article  Google Scholar 

  11. X. Huang, C. Zhu, Y. Lin, G. Fang, Thermal properties and applications of microencapsulated PCM for thermal energy storage: a review. Appl. Therm. Eng. 147, 841–855 (2019). https://doi.org/10.1016/j.applthermaleng.2018.11.007

    Article  Google Scholar 

  12. M.F. Demirbas, Thermal energy storage and phase change materials: an overview. Energy Sources B 1, 85–95 (2006). https://doi.org/10.1080/009083190881481

    Article  Google Scholar 

  13. S.D. Sharma, K. Sagara, Latent heat storage materials and systems: a review. Int. J. Green Energy 2, 1–56 (2005). https://doi.org/10.1081/ge-200051299

    Article  Google Scholar 

  14. Y. Li, P. Li, Q.Z. Zhu, Q.F. Li, Preparation and thermal characterization of nitrates/expanded graphite composite phase-change material for thermal energy storage. Int. J. Thermophys. 37, 1–14 (2016). https://doi.org/10.1007/s10765-016-2116-3

    Article  ADS  Google Scholar 

  15. N. Zhang, Y. Yuan, X. Cao, Y. Du, Z. Zhang, Y. Gui, Latent heat thermal energy storage systems with solid–liquid phase change materials: a review. Adv. Eng. Mater. 20, 1–30 (2018). https://doi.org/10.1002/adem.201700753

    Article  Google Scholar 

  16. D. Rozanna, T.G. Chuah, A. Salmiah, T.S.Y. Choong, M. Sa’ari, Fatty acids as phase change materials (PCMs) for thermal energy storage: a review. Int. J. Green Energy 1, 495–513 (2005). https://doi.org/10.1081/ge-200038722

    Article  Google Scholar 

  17. Y. Li, C.G. Wang, G.Y. Liu, Q.Z. Zhu, Z.Z. Qiu, Thermal property characterization of a low supercooling degree binary mixed molten salt for thermal energy storage system. Int. J. Thermophys. (2019). https://doi.org/10.1007/s10765-019-2501-9

    Article  Google Scholar 

  18. R.S. Kumar, D.J. Krishna, Differential scanning calorimetry (DSC) analysis of latent heat storage materials for low temperature (40–80 °C) solar heating applications. Int. J. Eng. Res. Technol. 2, 429–455 (2013)

    Google Scholar 

  19. N.H. Abu-Hamdeh, K.A. Alnefaie, Assessment of thermal performance of PCM in latent heat storage system for different applications. Sol. Energy 177, 317–323 (2019). https://doi.org/10.1016/j.solener.2018.11.035

    Article  ADS  Google Scholar 

  20. T. Markandeyulu, J.K. Devanuri, K. Kiran Kumar, On the suitability of phase change material (PCM) for thermal management of electronic components, Indian. J. Sci. Technol. 9, 1–4 (2016). https://doi.org/10.17485/ijst/2016/v9is1/107939

    Article  Google Scholar 

  21. A.E. Kabeel, Y.A.F. El-Samadony, W.M. El-Maghlany, Comparative study on the solar still performance utilizing different PCM. Desalination 432, 89–96 (2018). https://doi.org/10.1016/j.desal.2018.01.016

    Article  Google Scholar 

  22. H. Nazir, M. Batool, F.J. Bolivar Osorio, M. Isaza-Ruiz, X. Xu, K. Vignarooban, P. Phelan, Inamuddin, A.M. Kannan, Recent developments in phase change materials for energy storage applications: a review, Int. J. Heat Mass Transf. 129, 491–523 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.126.

  23. D. Jaya Krishna, Operational time and melt fraction based optimization of a phase change material longitudinal fin heat sink. J. Therm. Sci. Eng. Appl. 10, 1–4 (2018). https://doi.org/10.1115/1.4040988

    Article  Google Scholar 

  24. S. Jegadheeswaran, A. Sundaramahalingam, S.D. Pohekar, Alternative Heat Transfer Enhancement Techniques for Latent Heat Thermal Energy Storage System: A Review (Springer, 2021). https://doi.org/10.1007/s10765-021-02921-x

  25. W. Li, Y.-H.H. Wang, C.C.-C. Kong, Experimental study on melting/solidification and thermal conductivity enhancement of phase change material inside a sphere. Int. Commun. Heat Mass Transf. 68, 276–282 (2015). https://doi.org/10.1016/j.icheatmasstransfer.2015.09.004

    Article  Google Scholar 

  26. C.J. Ho, J.Y. Gao, An experimental study on melting heat transfer of paraffin dispersed with Al2O3 nanoparticles in a vertical enclosure. Int. J. Heat Mass Transf. 62, 752–760 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.035

    Article  Google Scholar 

  27. M. Al-Jethelah, S. Ebadi, K. Venkateshwar, S.H.H. Tasnim, S. Mahmud, A. Dutta, Charging nanoparticle enhanced bio-based PCM in open cell metallic foams: an experimental investigation. Appl. Therm. Eng. 148, 1029–1042 (2019). https://doi.org/10.1016/j.applthermaleng.2018.11.121

    Article  Google Scholar 

  28. D. Feldman, M.M. Shapiro, D. Banu, C.J. Fuks, Fatty acids and their mixtures as phase-change materials for thermal energy storage. Sol. Energy Mater. 18, 201–216 (1989). https://doi.org/10.1016/0165-1633(89)90054-3

    Article  Google Scholar 

  29. M. Hadjieva, S. Kanev, J. Argirov, Thermophysical properties of some paraffins applicable to thermal energy storage. Sol. Energy Mater. Sol. Cells 27, 181–187 (1992). https://doi.org/10.1016/0927-0248(92)90119-A

    Article  Google Scholar 

  30. A. Hasan, A.A. Sayigh, Some fatty acids as phase-change thermal energy storage materials. Renew. Energy 4, 69–76 (1994)

    Article  Google Scholar 

  31. V.D. Bhatt, K. Gohil, A. Mishra, Thermal energy storage capacity of some phase changing materials and ionic liquids. Int. J. ChemTech Res. 2, 1771–1779 (2015)

    Google Scholar 

  32. A. Sari, Eutectic mixtures of some fatty acids for low temperature solar heating applications: thermal properties and thermal reliability. Appl. Therm. Eng. 25, 2100–2107 (2005). https://doi.org/10.1016/j.applthermaleng.2005.01.010

    Article  Google Scholar 

  33. A. Sari, A. Karaipekli, Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage. Sol. Energy Mater. Sol. Cells 93, 571–576 (2009). https://doi.org/10.1016/j.solmat.2008.11.057

    Article  Google Scholar 

  34. A. Shukla, D. Buddhi, R.L. Sawhney, Thermal cycling test of few selected inorganic and organic phase change materials. Renew. Energy 33, 2606–2614 (2008). https://doi.org/10.1016/j.renene.2008.02.026

    Article  Google Scholar 

  35. C.W. Chan, F.L. Tan, Solidification inside a sphere—an experimental study. Int. Commun. Heat Mass Transf. 33, 335–341 (2006). https://doi.org/10.1016/j.icheatmasstransfer.2005.10.010

    Article  Google Scholar 

  36. E. Assis, L. Katsman, G. Ziskind, R. Letan, Numerical and experimental study of melting in a spherical shell. Int. J. Heat Mass Transf. 50, 1790–1804 (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.007

    Article  MATH  Google Scholar 

  37. S.F. Hosseinizadeh, A.A. Rabienataj Darzi, F.L. Tan, J.M. Khodadadi, Unconstrained melting inside a sphere. Int. J. Therm. Sci. 63, 55–64 (2013). https://doi.org/10.1016/j.ijthermalsci.2012.07.012

    Article  Google Scholar 

  38. F.L. Tan, S.F. Hosseinizadeh, J.M. Khodadadi, L. Fan, Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule. Int. J. Heat Mass Transf. 52, 3464–3472 (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.043

    Article  MATH  Google Scholar 

  39. H. Shokouhmand, B. Kamkari, Experimental investigation on melting heat transfer characteristics of lauric acid in a rectangular thermal storage unit. Exp. Therm. Fluid Sci. 50, 201–222 (2013). https://doi.org/10.1016/j.expthermflusci.2013.06.010

    Article  Google Scholar 

  40. M. Akgün, O. Aydin, K. Kaygusuz, Experimental study on melting/solidification characteristics of a paraffin as PCM. Energy Convers. Manag. 48, 669–678 (2007). https://doi.org/10.1016/j.enconman.2006.05.014

    Article  Google Scholar 

  41. K.R. Manish, B. Jyotirmay, Development of correlation for melting time of phase change material in latent heat storage unit. Energy Procedia (2015). https://doi.org/10.1016/j.egypro.2015.07.339

    Article  Google Scholar 

  42. U.M. Gaddala, J.K. Devanuri, A hybrid decision-making method for the selection of a phase change material for thermal energy storage. J. Therm. Sci. Eng. Appl. 12, 1–11 (2020). https://doi.org/10.1115/1.4046056

    Article  Google Scholar 

  43. M.M.A. Khan, N.I. Ibrahim, R. Saidur, I.M. Mahbubul, F.A. Al-Sulaiman, Performance assessment of a solar powered ammonia–water absorption refrigeration system with storage units. Energy Convers. Manag. 126, 316–328 (2016). https://doi.org/10.1016/j.enconman.2016.08.004

    Article  Google Scholar 

  44. A. Sharma, A. Shukla, Thermal cycle test of binary mixtures of some fatty acids as phase change materials for building applications. Energy Build. 99, 196–203 (2015). https://doi.org/10.1016/j.enbuild.2015.04.028

    Article  Google Scholar 

  45. S.M. Hasnain, Review on sustainable thermal energy storage technologies, Part I: heat storage materials and techniques. Energy Convers. Manag. 39, 1127–1138 (1998). https://doi.org/10.1016/S0196-8904(98)00025-9

    Article  Google Scholar 

  46. N.R. Jankowski, F.P. McCluskey, A review of phase change materials for vehicle component thermal buffering. Appl. Energy 113, 1525–1561 (2014). https://doi.org/10.1016/j.apenergy.2013.08.026

    Article  Google Scholar 

  47. A. Sari, Thermal energy storage properties of mannitol-fatty acid esters as novel organic solid–liquid phase change materials. Energy Convers. Manag. 64, 68–78 (2012). https://doi.org/10.1016/j.enconman.2012.07.003

    Article  Google Scholar 

  48. L.F. Cabeza, A. Castell, C. Barreneche, A. De Gracia, A.I. Fernández, Materials used as PCM in thermal energy storage in buildings: a review. Renew. Sustain. Energy Rev. 15, 1675–1695 (2011). https://doi.org/10.1016/j.rser.2010.11.018

    Article  Google Scholar 

  49. G. Uma Maheswararao, A. Majumadar, T. Niphadkar, D. Jaya Krishna, An image processing algorithm to estimate the melt fraction and energy storage of a PCM enclosed in a spherical capsule. Int. J. Energy Res. 43, 5535–5547 (2019). https://doi.org/10.1002/er.4668

    Article  Google Scholar 

  50. S. Seddegh, X. Wang, M.M. Joybari, F. Haghighat, Investigation of the effect of geometric and operating parameters on thermal behavior of vertical shell-and-tube latent heat energy storage systems. Energy 137, 69–82 (2017). https://doi.org/10.1016/j.energy.2017.07.014

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank SERB: Fast Track Scheme for Young Scientists, Department of Science and Technology (DST), Government of India for partially funding this research work (No. SB/FTP/ETA-0130/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bibin John.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uma Maheswararao, G., Jaya Krishna, D. & John, B. Melting and Solidification Behaviour of Some Organic Phase Change Materials Applicable to Low Temperature Heat Storage Applications. Int J Thermophys 43, 113 (2022). https://doi.org/10.1007/s10765-022-03042-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03042-9

Keywords

Navigation