Skip to main content
Log in

Experimental and Numerical Study of Thermal Efficiency of Helically Coiled Tube Heat Exchanger Using Ethylene Glycol-Distilled Water Based Fe3O4 Nanofluid

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this study, the effect of \({{Fe}}_{3}{{O}}_{4}\) magnetic nanoparticles on the efficiency of helically coiled tube heat exchanger (HCHE) has been investigated both numerically and experimentally. The solution of 20 % Ethylene glycol (EG) and distilled water is used as the base fluid. The effect of parameters including volume fraction of nanoparticles, coil inlet temperature, flow rate at the shell/coil side, and coil diameter on the heat transfer of the heat exchanger has been investigated. The results show that with increasing the flow rate on the coil side, the heat transfer coefficients and the Nusselt number are increased. It was observed that the heat transfer coefficient for the solution of distilled water-ethylene glycol increases by about 60 % with 0.1 volume fraction of \({{Fe}}_{3}{{O}}_{4}\) nanoparticles. As the coil inlet temperature increases from 40 \(^\circ{\rm C} \) to 60 \(^\circ{\rm C} \), the overall Nusselt number increases by 22 %. As expected, as the nanofluid flow rate increases, the heat transfer coefficient increases. For a wide range of flow rates, the internal and external heat transfer coefficients of the coil have been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

A:

Area, mm2

\({C}_{1},{C}_{2},{C}_{1{\varepsilon }_{d}},{C}_{3{\varepsilon }_{d}}\) :

\(k-\varepsilon \) Turbulence model constants

\({C}_{p}\) :

Specific heat, \( Jkg^{{ - 1}} \cdot K^{{ - 1}} \)

D \((m)\) :

Tube diameter,\(m\)

\({G}_{b}\) :

Generation of turbulent kinetic energy due to buoyancy

\({G}_{k}\) :

Generation of turbulent kinetic energy due to the mean velocity gradients

\(De\) :

Dean number

\({d}_{np}(m)\) :

Diameter of nanoparticle, \(nm\)

\({d}_{c}(m)\) :

Diameter of coil, \(mm\)

EG :

Ethylene glycol

\(\dot{m}\) :

Flow rate, \( kg \cdot s^{{ - 1}} \)

\(h\) :

Heat transfer coefficient, \( W \cdot m^{{ - 2}} \cdot K^{{ - 1}} \)

k :

Thermal conductivity, \( W \cdot m^{{ - 1}} \cdot K^{{ - 1}} \)

\(Nu\) :

Nusselt number

\(Pr\) :

Prandtl number

\(Re\) :

Reynolds number

\({S}_{ij}\) :

Deformation tensor

\({S}_{k}\) :

Mean strain rate for \(k\)

\(T (K)\) :

Temperature, \(K\)

\(NTU\) :

Number of transfer units

\(L\) :

Shell length, \(m\)

\({P}_{outlet}\) :

Outlet pressure, \(Pa\)

\(u\) :

Fluid velocity, \( m \cdot s^{{ - 1}} \)

\(U\) :

Overall heat transfer coefficient, \( W \cdot m^{{ - 2}} .^{^\circ } {\text{C}} \)

\({\Delta T}_{ln}\) :

Logarithmic mean temperature difference, \(K\)

\( \rho (kg \cdot m^{{ - 3}} ) \) :

Density, \( kg \cdot m^{{ - 3}} \)

\(\varphi \) :

Volume fraction of nanoparticles

\(\mu \) :

Dynamic viscosity, \(Pa.s\)

\({\sigma }_{k}\) :

Turbulence Prandtl number for \(k\)

\(\varepsilon \) :

Heat exchanger efficiency

\(c\) :

Coil

\(sh\) :

Shell

\(nf\) :

Nanofluid

\(p\) :

Solid particle

\(i\) :

Inlet

\(o\) :

Outlet

act:

Actual

max:

Maximum

References

  1. P.K. Sahoo, M.I.A. Ansari, A.K. Datta, A computer based iterative solution for accurate estimation of heat transfer coefficients in a helical tube heat exchanger. J. Food Eng. 58, 211–214 (2003). https://doi.org/10.1016/S0260-8774(02)00370-9

    Article  Google Scholar 

  2. S. Chingulpitak, S. Wongwises, A comparison of flow characteristics of refrigerants flowing through adiabatic straight and helical capillary tubes. Int. Commun. Heat Mass Transf. (2011). https://doi.org/10.1016/j.icheatmasstransfer.2010.12.014

    Article  Google Scholar 

  3. W.H. Park, C.K.K. Yang, Effects of using advanced cooling systems on the overall power consumption of processors, IEEE Trans. Very Large Scale Integr. Syst. (2013). https://doi.org/10.1109/TVLSI.2012.2217386

    Article  Google Scholar 

  4. H. Ma, N. Du, Z. Zhang, F. Lyu, N. Deng, C. Li, S. Yu, Assessment of the optimum operation conditions on a heat pipe heat exchanger for waste heat recovery in steel industry. Renew. Sustain. Energy Rev. (2017). https://doi.org/10.1016/j.rser.2017.04.122

    Article  Google Scholar 

  5. K. Chen, Y. Chen, Y. She, M. Song, S. Wang, L. Chen, Construction of effective symmetrical air-cooled system for battery thermal management. Appl. Therm. Eng. (2020). https://doi.org/10.1016/j.applthermaleng.2019.114679

    Article  Google Scholar 

  6. B.A. Bhanvase, S.D. Sayankar, A. Kapre, P.J. Fule, S.H. Sonawane, Experimental investigation on intensified convective heat transfer coefficient of water based PANI nanofluid in vertical helical coiled heat exchanger. Appl. Therm. Eng. (2018). https://doi.org/10.1016/j.applthermaleng.2017.09.009

    Article  Google Scholar 

  7. L.A.M. Janssen, C.J. Hoogendoorn, Laminar convective heat transfer in helical coiled tubes. Int. J. Heat Mass Transf. (1978). https://doi.org/10.1016/0017-9310(78)90138-2

    Article  Google Scholar 

  8. P. Naphon, J. Suwagrai, Effect of curvature ratios on the heat transfer and flow developments in the horizontal spirally coiled tubes. Int. J. Heat Mass Transf. (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2006.08.002

    Article  MATH  Google Scholar 

  9. J.S. Jayakumar, S.M. Mahajani, J.C. Mandal, K.N. Iyer, P.K. Vijayan, CFD analysis of single-phase flows inside helically coiled tubes. Comput. Chem. Eng. (2010). https://doi.org/10.1016/j.compchemeng.2009.11.008

    Article  Google Scholar 

  10. R. Beigzadeh, M. Rahimi, Prediction of heat transfer and flow characteristics in helically coiled tubes using artificial neural networks. Int. Commun. Heat Mass Transf. (2012). https://doi.org/10.1016/j.icheatmasstransfer.2012.06.008

    Article  Google Scholar 

  11. S.S. Pawar, V.K. Sunnapwar, Experimental and CFD investigation of convective heat transfer in helically coiled tube heat exchanger. Chem. Eng. Res. Des. (2014). https://doi.org/10.1016/j.cherd.2014.01.016

    Article  Google Scholar 

  12. Y. Xuan, Q. Li, Investigation on convective heat transfer and flow features of nanofluids. J. Heat Transfer. (2003). https://doi.org/10.1115/1.1532008

    Article  Google Scholar 

  13. G. Roy, C.T. Nguyen, P.R. Lajoie, Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids. Superlattices Microstruct. (2004). https://doi.org/10.1016/j.spmi.2003.09.011

    Article  Google Scholar 

  14. M. Shahul Hameed, S. Suresh, R.K. Singh, Comparative study of heat transfer and friction characteristics of water-based Alumina–copper and Alumina–CNT hybrid nanofluids in laminar flow through pipes, J (Anal. Calorim, Therm, 2019). https://doi.org/10.1007/s10973-018-7898-z

    Book  Google Scholar 

  15. R. Essajai, I. Tabtab, A. Mzerd, O. Mounkachi, N. Hassanain, M. Qjani, Molecular dynamics study of thermal properties of nanofluids composed of one-dimensional (1-D) network of interconnected gold nanoparticles. Results Phys. (2019). https://doi.org/10.1016/j.rinp.2019.102576

    Article  Google Scholar 

  16. M. Chandra Sekhara Reddy, V. Vasudeva Rao, Experimental investigation of heat transfer coefficient and friction factor of ethylene glycol water based TiO2 nanofluid in double pipe heat exchanger with and without helical coil inserts. Int. Commun. Heat Mass Transf. (2014). https://doi.org/10.1016/j.icheatmasstransfer.2013.11.002

    Article  Google Scholar 

  17. N. Jamshidi, M. Farhadi, D.D. Ganji, K. Sedighi, Experimental analysis of heat transfer enhancement in shell and helical tube heat exchangers. Appl. Therm. Eng. (2013). https://doi.org/10.1016/j.applthermaleng.2012.10.008

    Article  Google Scholar 

  18. K.Y. Leong, R. Saidur, S.N. Kazi, A.H. Mamun, Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator). Appl. Therm. Eng. (2010). https://doi.org/10.1016/j.applthermaleng.2010.07.019

    Article  Google Scholar 

  19. F. Akbaridoust, M. Rakhsha, A. Abbassi, M. Saffar-Avval, Experimental and numerical investigation of nanofluid heat transfer in helically coiled tubes at constant wall temperature using dispersion model. Int. J. Heat Mass Transf. (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.064

    Article  Google Scholar 

  20. A. Alimoradi, F. Veysi, Prediction of heat transfer coefficients of shell and coiled tube heat exchangers using numerical method and experimental validation. Int. J. Therm. Sci. (2016). https://doi.org/10.1016/j.ijthermalsci.2016.04.010

    Article  Google Scholar 

  21. A.S. Teja, P.Y. Koh, Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth Charact. Mater. (2009). https://doi.org/10.1016/j.pcrysgrow.2008.08.003

    Article  Google Scholar 

  22. R.M. Cornell, U. Schwertmann (2003) The iron oxides: structure, properties, reactions, occurrences and uses: second ed.,

  23. J. Ma, Y. Xu, W. Li, J. Zhao, S. Zhang, S. Basov, Experimental investigation into the forced convective heat transfer of aqueous Fe 3 O 4 nanofluids under transition region. J. Nanoparticles. (2013). https://doi.org/10.1155/2013/601363

    Article  Google Scholar 

  24. L. Syam Sundar, M.K. Singh, A.C.M. Sousa, Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications. Int. Commun. Heat Mass Transf. (2013). https://doi.org/10.1016/j.icheatmasstransfer.2013.02.014

    Article  Google Scholar 

  25. S.V. Mousavi, M. Sheikholeslami, M. Gorji bandpy, M. Barzegar Gerdroodbary, The Influence of magnetic field on heat transfer of magnetic nanofluid in a sinusoidal double pipe heat exchanger. Chem. Eng. Res. Des. (2016). https://doi.org/10.1016/j.cherd.2016.07.009

    Article  Google Scholar 

  26. N.T. Ravi Kumar, P. Bhramara, L.S. Sundar, M.K. Singh, A.C.M. Sousa, Heat transfer, friction factor and effectiveness of Fe3O4 nanofluid flow in an inner tube of double pipe U-bend heat exchanger with and without longitudinal strip inserts. Exp. Therm. Fluid Sci. (2017). https://doi.org/10.1016/j.expthermflusci.2017.03.019

    Article  Google Scholar 

  27. L. Sha, Y. Ju, H. Zhang, J. Wang, Experimental investigation on the convective heat transfer of Fe3O4/water nanofluids under constant magnetic field. Appl. Therm. Eng. (2017). https://doi.org/10.1016/j.applthermaleng.2016.11.060

    Article  Google Scholar 

  28. R.K. Ajeel, W.S.I.W. Salim, K. Hasnan, Experimental and numerical investigations of convection heat transfer in corrugated channels using alumina nanofluid under a turbulent flow regime. Chem. Eng. Res. Des. (2019). https://doi.org/10.1016/j.cherd.2019.06.003

    Article  Google Scholar 

  29. M.R. Salem, K.M. Elshazly, R.Y. Sakr, R.K. Ali, Experimental investigation of coil curvature effect on heat transfer and pressure drop characteristics of shell and coil heat exchanger. J. Therm. Sci. Eng. Appl. (2015). https://doi.org/10.1115/1.4028612

    Article  Google Scholar 

  30. A.D. Tuncer, A. Sözen, A. Khanlari, E.Y. Gürbüzb, H.İ Variyenli, Experimental and numerical analysis of a new modification for enhancing thermal performance of a shell and helically coiled heat exchanger. J. Applthermaleng (2020). https://doi.org/10.1016/.2020.116272

    Article  Google Scholar 

  31. Y. Cengel, Heat Transfer: A Practical Approach, J. Chem. Inf. Model. (2013).

  32. A.H. Rasheed, H.B. Alias, S.D. Salman, Experimental and numerical investigations of heat transfer enhancement in shell and helically microtube heat exchanger using nanofluids. Int. J. Therm. Sci. (2021). https://doi.org/10.1016/j.ijthermalsci.2020.106547

    Article  Google Scholar 

  33. J. Koo, C. Kleinstreuer, Laminar nanofluid flow in microheat-sinks. Int. J. Heat Mass Transf. (2005). https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.029

    Article  MATH  Google Scholar 

  34. K. Khanafer, K. Vafai, M. Lightstone, Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transf. (2003). https://doi.org/10.1016/S0017-9310(03)00156-X

    Article  MATH  Google Scholar 

  35. N. Nithyadevi, P. Kandaswamy, J. Lee, Natural convection in a rectangular cavity with partially active side walls. Int. J. Heat Mass Transf. (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.050

    Article  MATH  Google Scholar 

  36. I.H. Bell, J. Wronski, S. Quoilin, V. Lemort, Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop. Ind. Eng. Chem. Res. (2014). https://doi.org/10.1021/ie4033999

    Article  Google Scholar 

  37. J.I. Córcoles, J.D. Moya-Rico, A.E. Molina, J.A. Almendros-Ibáñez, Numerical and experimental study of the heat transfer process in a double pipe heat exchanger with inner corrugated tubes. Int. J. Therm. Sci. (2020). https://doi.org/10.1016/j.ijthermalsci.2020.106526

    Article  Google Scholar 

  38. H.M. Maghrabie, M. Attalla, A.A.A. Mohsen, Performance assessment of a shell and helically coiled tube heat exchanger with variable orientations utilizing different nanofluids. J Applthermaleng (2020). https://doi.org/10.1016/j.applthermaleng.2020.116013

    Article  Google Scholar 

  39. M. Attalla, H.M. Maghrabie, An experimental study on heat transfer and fluid flow of rough plate heat exchanger using Al2O3/water nanofluid. Exp. Heat Transf. 33, 261–281 (2020). https://doi.org/10.1080/08916152.2019.1625469

    Article  ADS  Google Scholar 

  40. M. Attalla, Experimental investigation of heat transfer and pressure drop of SiO2/ water nanofluid through conduits with altered cross-sectional shapes. Heat Mass Transf. Und Stoffuebertragung. 55, 3427–3442 (2019). https://doi.org/10.1007/s00231-019-02668-0

    Article  ADS  Google Scholar 

  41. O. Mahian, L. Kolsi, M. Amani, P. Estell´e, G. Ahmadi, C. Kleinstreuer, J.S. Marshall, M. Siavashi, R.A. Taylor, H. Niazmand, S. Wongwises, T. Hayat, A. Kolanjiyil, A. Kasaeian, I. Pop, Recent advances in modeling and simulation of nanofluid flows-Part I: fundamentals and theory. Phys. Rep. (2019). https://doi.org/10.1016/j.physrep.2018.11.004

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would also like to show their gratitude to the Razi University, Kermanshah, Iran, for providing the required location for performing the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saman Aminian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaderi, A., Veysi, F., Aminian, S. et al. Experimental and Numerical Study of Thermal Efficiency of Helically Coiled Tube Heat Exchanger Using Ethylene Glycol-Distilled Water Based Fe3O4 Nanofluid. Int J Thermophys 43, 118 (2022). https://doi.org/10.1007/s10765-022-03041-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03041-w

Keywords

Navigation