Skip to main content

Advertisement

Log in

A Comprehensive Review on Thermal Performance Enhancement of Plate Heat Exchanger

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Heat exchanger plays a crucial role in the functioning of chemical industries, diary and food processing industries, and thermal plants. The enhancements in heat exchangers are mainly aimed at minimizing the energy consumption. An efficient heat exchanger is one that provides high heat transfer rate with minimum pumping power at low cost for energy saving. PHEs are used in various engineering fields due to their simplicity, flexibility, and maintainability related to others. In this paper, passive surface enhancement methods for single-phase and two-phase flow and application of nanofluids in different types of PHE are reviewed. The effect of geometrical parameters on hydraulic-thermal performance and occurrence of fouling deposits in PHE are also discussed. The chevron angle is found to be the most dominating geometrical parameter to change the flow properties. HTC, Nu, and ΔP increased with the increase in β, γ, and ϕ. For the two-phase flow, ΔP increased with the rise in vapor quality, mass flow rate and reduced with increase in saturation pressure. The optimum geometrical parameters for maximum heat transfer are β: 30°-60°, γ: 0.075–0.6, and φ: 1.18–1.3. The use of nanofluids in laminar flow condition is suggested by most of the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

PHE:

Plate Heat Exchanger

THE:

Tube Heat Exchanger

HTC:

Heat transfer coefficient

NTU:

Number of transfer unit

CFD:

Computational fluid dynamics

EG:

Ethylene glycol

MWCNTs:

Multi-walled carbon nanotubes

BHT:

Boiling heat transfer

β :

Plate chevron angle (degree)

λ :

Corrugation Pitch (mm)

γ :

Channel profile aspect ratio

φ :

Surface enlargement factor

ϕ :

Nanoparticle concentration

ε :

Heat exchanger effectiveness

η :

Heat exchanger efficiency

ρ :

Density (kg·m−3)

μ :

Dynamic viscosity (Pa-s)

eff :

Effective

proj :

Projected

h :

Hydraulic

e :

Equivalent

evap :

Evaporation

cond :

Condensation

w :

Water

nf :

Nanofluid

sat :

Saturation

cfo :

Cold fluid at outlet

cri :

Critical

in :

Inlet

L :

Plate length (mm)

w :

Plate width (mm)

t :

Plate thickness (mm)

d :

Diameter (mm)

r c :

Curvature radius

b :

Corrugation depth (mm)

H :

Height (mm)

θ :

Intersection angle (degree)

A :

Heat transfer area per plate (m2)

S :

Channel spacing (mm)

N :

Number of plates

x :

Vapor quality

T :

Temperature (°C)

g :

Acceleration due to gravity (m·s−2)

m :

Mass flow rate (kg·s−1)

G :

Mass flux (kg·m−2·s−1)

Q :

Heat transfer rate (watt)

q :

Heat flux (W·m−2)

h :

Convective heat transfer coefficient (W·m−2·K−1)

U m :

Overall heat transfer coefficient (W·m−2·K−1)

u :

Fluid velocity (m·s−1)

K :

Thermal conductivity (W·m−1·K−1)

Δ P :

Frictional pressure drop (Pa)

Nu :

Average Nusselt number

Nu x :

Local Nusselt number

Re :

Reynolds number

Pr :

Prandtl number

Pe :

Peclet number

j :

Colburn factor

f :

Friction factor

R a :

Surface roughness

Δ h :

Enthalpy change (kJ·kg−1)

References

  1. W.M. Kays, A.L. London, E.R.G. Eckert, Compact heat exchangers. J. Appl. Mech. 27, 377 (1960). https://doi.org/10.1115/1.3644004

    Article  ADS  Google Scholar 

  2. B. Sundén, R.M. Manglik, Plate heat exchangers: design, applications and performance, vol. 11 (Wit Press, New York, 2007)

    Google Scholar 

  3. W.M. Rohsenow, J.P. Hartnett, Y.I. Cho, Handbook of heat transfer, vol. 3 (McGraw-Hill, New York, 1998)

    Google Scholar 

  4. R.K. Shah, D.P. Sekulic, Fundamentals of heat exchanger design (Wiley, New York, 2003)

    Book  Google Scholar 

  5. P. Stehlík, V.V. Wadekar, Different strategies to improve industrial heat exchange. Heat Transf. Eng. 23, 36–48 (2002)

    Article  ADS  Google Scholar 

  6. M. Reppich, Use of high performance plate heat exchangers in chemical and process industries. Int. J. Therm. Sci. 38, 999–1008 (1999). https://doi.org/10.1016/S1290-0729(99)00109-X

    Article  Google Scholar 

  7. M.M. Shah, Heat transfer during condensation in corrugated plate heat exchangers. Int. J. Refrig. 127, 180–193 (2021). https://doi.org/10.1016/j.ijrefrig.2021.02.011

    Article  Google Scholar 

  8. K.M. Yashawantha, G. Gurjar, A.V. Vinod, Low temperature heat transfer in plate heat exchanger using ethylene glycol-water based Al2O3 nanofluid. Int. J. Thermophys. 42, 1–30 (2021). https://doi.org/10.1007/s10765-021-02843-8

    Article  Google Scholar 

  9. K. Thulukkanam, Heat exchanger design handbook (CRC Press, New York, 2000)

    Book  Google Scholar 

  10. R.K. Shah, Plate heat exchangers and their design theory. Heat Transf. Equip. Des. 227, 1 (1988)

    Google Scholar 

  11. A. Hajatzadeh Pordanjani, S. Aghakhani, M. Afrand, B. Mahmoudi, O. Mahian, S. Wongwises, An updated review on application of nanofluids in heat exchangers for saving energy. Energy Convers. Manag. 198, 111886 (2019). https://doi.org/10.1016/j.enconman.2019.111886

    Article  Google Scholar 

  12. O.P. Arsenyeva, L.L. Tovazhnyanskyy, P.O. Kapustenko, G.L. Khavin, A.P. Yuzbashyan, P.Y. Arsenyev, Two types of welded plate heat exchangers for efficient heat recovery in industry. Appl. Therm. Eng. 105, 763–773 (2016). https://doi.org/10.1016/j.applthermaleng.2016.03.064

    Article  Google Scholar 

  13. K. Sarraf, S. Launay, L. Tadrist, Complex 3D-flow analysis and corrugation angle effect in plate heat exchangers. Int. J. Therm. Sci. 94, 126–138 (2015). https://doi.org/10.1016/j.ijthermalsci.2015.03.002

    Article  Google Scholar 

  14. G.F. Hewitt, J. Barbosa, Heat exchanger design handbook, vol. 98 (Begell House, New York, 2008)

    Google Scholar 

  15. H. Martin, A theoretical approach to predict the performance of chevron-type plate heat exchangers. Chem. Eng. Process. Process Intensif. 35, 301–310 (1996). https://doi.org/10.1016/0255-2701(95)04129-X

    Article  Google Scholar 

  16. J. Zhang, X. Zhu, M.E. Mondejar, F. Haglind, A review of heat transfer enhancement techniques in plant heat exchanger. Renew. Sustain. Energy Rev. 101, 305–328 (2019). https://doi.org/10.1016/j.rser.2018.11.017

    Article  Google Scholar 

  17. A.K. Tiwari, P. Ghosh, J. Sarkar, Performance comparison of the plate heat exchanger using different nanofluids. Exp. Therm. Fluid Sci. 49, 141–151 (2013). https://doi.org/10.1016/j.expthermflusci.2013.04.012

    Article  Google Scholar 

  18. J.A.W. Gut, J.M. Pinto, Optimal configuration design for plate heat exchangers. Int. J. Heat Mass Transf. 47, 4833–4848 (2004). https://doi.org/10.1016/j.ijheatmasstransfer.2004.06.002

    Article  Google Scholar 

  19. T.M. Abou Elmaaty, A.E. Kabeel, M. Mahgoub, Corrugated plate heat exchanger review. Renew. Sustain. Energy Rev. 70, 852–860 (2017). https://doi.org/10.1016/j.rser.2016.11.266

    Article  Google Scholar 

  20. R.H.S. Winterton, Where did the Dittus and Boelter equation come from? Int. J. Heat Mass Transf. 41, 809–810 (1998)

    Article  Google Scholar 

  21. H. Mori, S. Nakamura, F. Ono, K. Kariya, S. Umezawa, A study on characteristics of cooling heat transfer of supercritical pressure fluids in a plate heat exchanger. Heat Transf. Eng. 37, 659–667 (2016). https://doi.org/10.1080/01457632.2015.1067054

    Article  ADS  Google Scholar 

  22. D.P. Soman, S. Karthika, P. Kalaichelvi, T.K. Radhakrishnan, Experimental study of turbulent forced convection heat transfer and friction factor in dimpled plate heat exchanger. Appl. Therm. Eng. 162, 114254 (2019). https://doi.org/10.1016/j.applthermaleng.2019.114254

    Article  Google Scholar 

  23. R. Bogaert, A. Böles, Global performance of a prototype brazed plate heat exchanger in a large reynolds number range. Exp. Heat Transf. 8, 293–311 (1995). https://doi.org/10.1080/08916159508946508

    Article  ADS  Google Scholar 

  24. A. Muley, Heat transfer and pressure drop in plate heat exchangers [Ph.D. thesis], Dept Mech. Ind. Nucl. Eng. Div Grad. Stud. Res. Univ. Cincinnati, 1997.

  25. Y. Islamoglu, C. Parmaksizoglu, The effect of channel height on the enhanced heat transfer characteristics in a corrugated heat exchanger channel. Appl. Therm. Eng. 23, 979–987 (2003). https://doi.org/10.1016/S1359-4311(03)00029-2

    Article  Google Scholar 

  26. J.A.W. Gut, R. Fernandes, J.M. Pinto, C.C. Tadini, Thermal model validation of plate heat exchangers with generalized configurations. Chem. Eng. Sci. 59, 4591–4600 (2004). https://doi.org/10.1016/j.ces.2004.07.025

    Article  Google Scholar 

  27. T.S. Khan, M.S. Khan, M.C. Chyu, Z.H. Ayub, Experimental investigation of single phase convective heat transfer coefficient in a corrugated plate heat exchanger for multiple plate configurations. Appl. Therm. Eng. 30, 1058–1065 (2010). https://doi.org/10.1016/j.applthermaleng.2010.01.021

    Article  Google Scholar 

  28. M. Faizal, M.R. Ahmed, Experimental studies on a corrugated plate heat exchanger for small temperature difference applications. Exp. Therm. Fluid Sci. 36, 242–248 (2012). https://doi.org/10.1016/j.expthermflusci.2011.09.019

    Article  Google Scholar 

  29. O.P. Arsenyeva, L.L. Tovazhnyanskyy, P.O. Kapustenko, O.V. Demirskiy, Heat transfer and friction factor in criss-cross flow channels of plate-and-frame heat exchangers. Theor. Found. Chem. Eng. 46, 634–641 (2012). https://doi.org/10.1134/S0040579512060024

    Article  Google Scholar 

  30. W.M. Abed, R.D. Whalley, D.J.C. Dennis, R.J. Poole, Numerical and experimental investigation of heat transfer and fluid flow characteristics in a micro-scale serpentine channel. Int. J. Heat Mass Transf. 88, 790–802 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.062

    Article  Google Scholar 

  31. S. Hu, X. Ma, W. Zhou, Condensation heat transfer of ethanol-water vapor in a plate heat exchanger. Appl. Therm. Eng. 113, 1047–1055 (2017). https://doi.org/10.1016/j.applthermaleng.2016.11.013

    Article  Google Scholar 

  32. S. Jin, P. Hrnjak, Effect of end plates on heat transfer of plate heat exchanger. Int. J. Heat Mass Transf. 108, 740–748 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.106

    Article  Google Scholar 

  33. M.B. Kim, C.Y. Park, An experimental study on single phase convection heat transfer and pressure drop in two brazed plate heat exchangers with different chevron shapes and hydraulic diameters. J. Mech. Sci. Technol. 31, 2559–2571 (2017). https://doi.org/10.1007/s12206-017-0454-0

    Article  Google Scholar 

  34. A. Sharif, B. Ameel, I. T’Jollyn, S. Lecompte, M. De Paepe, Comparative performance assessment of plate heat exchangers with triangular corrugation. Appl. Therm. Eng. 141, 186–199 (2018). https://doi.org/10.1016/j.applthermaleng.2018.05.111

    Article  Google Scholar 

  35. D. Junqi, Z. Xianhui, W. Jianzhang, Experimental Study on Thermal Hydraulic Performance of Plate-Type Heat Exchanger Applied in Engine Waste Heat Recovery. Arab. J. Sci. Eng. 43, 1153–1163 (2018). https://doi.org/10.1007/s13369-017-2765-y

    Article  Google Scholar 

  36. B. Kumar, A. Soni, S.N. Singh, Effect of geometrical parameters on the performance of chevron type plate heat exchanger. Exp. Therm. Fluid Sci. 91, 126–133 (2018). https://doi.org/10.1016/j.expthermflusci.2017.09.023

    Article  Google Scholar 

  37. M.N. Khalaji, I. Kotcioglu, S. Caliskan, A. Cansiz, The second law analysis of thermodynamics for the plate-fin surface performance in a cross flow heat exchanger. J. Heat Transfer 141, 1 (2019). https://doi.org/10.1115/1.4041498

    Article  Google Scholar 

  38. S. Mohebbi, F. Veysi, An experimental investigation on the heat transfer and friction coefficients of a small plate heat exchanger with chevron angle. Heat Mass Transf. Stoffuebertragung (2019). https://doi.org/10.1007/s00231-019-02749-0

    Article  Google Scholar 

  39. M. Piper, A. Zibart, E. Djakow, R. Springer, W. Homberg, E.Y. Kenig, Heat transfer enhancement in pillow-plate heat exchangers with dimpled surfaces: a numerical study. Appl. Therm. Eng. 153, 142–146 (2019). https://doi.org/10.1016/j.applthermaleng.2019.02.082

    Article  Google Scholar 

  40. J. Sodagar-Abardeh, A. Ebrahimi-Moghadam, M. Farzaneh-Gord, A. Norouzi, Optimizing chevron plate heat exchangers based on the second law of thermodynamics and genetic algorithm. J. Therm. Anal. Calorim. 139, 3563–3576 (2020). https://doi.org/10.1007/s10973-019-08742-3

    Article  Google Scholar 

  41. O. Arsenyeva, J.J. Klemeš, P. Kapustenko, O. Fedorenko, S. Kusakov, D. Kobylnik, Plate heat exchanger design for the utilisation of waste heat from exhaust gases of drying process. Energy 233, 121186 (2021)

    Article  Google Scholar 

  42. O. Arsenyeva, J. Jaromír Klemeš, S. Plankovskyy, P. Kapustenko, The influence of plate corrugation geometry on heat and mass transfer performance of plate heat exchangers for condensation of steam in the presence of air. Therm. Sci. Eng. Prog. 30, 101248 (2022). https://doi.org/10.1016/j.tsep.2022.101248

    Article  Google Scholar 

  43. E.M.S. El-Said, S.M. Elshamy, A.A. Hegazi, Experimental investigation on thermo-hydraulic performance of a helical plate heat exchanger. Exp. Heat Transf. 1, 1–20 (2022)

    Article  Google Scholar 

  44. A. Jafari, A. Sadeghianjahromi, C.-C. Wang, Experimental and numerical investigation of brazed plate heat exchangers – a new approach. Appl. Therm. Eng. 200, 117694 (2022). https://doi.org/10.1016/j.applthermaleng.2021.117694

    Article  Google Scholar 

  45. N.K. Panday, S.N. Singh, Study of thermo-hydraulic performance of chevron type plate heat exchanger with wire inserts in the channel. Int. J. Therm. Sci. 173, 107360 (2022). https://doi.org/10.1016/j.ijthermalsci.2021.107360

    Article  Google Scholar 

  46. Dovic and Svaic, Influence of chevron plates geometry on performances of plate heat exchangers. Teh. Vjesn. 14, 37–45 (2007)

    Google Scholar 

  47. J.H. Lin, C.Y. Huang, C.C. Su, Dimensional analysis for the heat transfer characteristics in the corrugated channels of plate heat exchangers. Int. Commun. Heat Mass Transf. 34, 304–312 (2007). https://doi.org/10.1016/j.icheatmasstransfer.2006.12.002

    Article  Google Scholar 

  48. A.G. Kanaris, A.A. Mouza, S.V. Paras, Optimal design of a plate heat exchanger with undulated surfaces. Int. J. Therm. Sci. 48, 1184–1195 (2009). https://doi.org/10.1016/j.ijthermalsci.2008.11.001

    Article  Google Scholar 

  49. Q.W. Wang, D.J. Zhang, G.N. Xie, Experimental study and genetic-algorithm-based correlation on pressure drop and heat transfer performances of a cross-corrugated primary surface heat exchanger. J. Heat Transfer 131, 1–8 (2009). https://doi.org/10.1115/1.3090716

    Article  Google Scholar 

  50. W. Han, K. Saleh, V. Aute, G. Ding, Y. Hwang, R. Radermacher, Numerical simulation and optimization of single-phase turbulent flow in chevron-type plate heat exchanger with sinusoidal corrugations. HVAC R Res. 17, 186–197 (2011). https://doi.org/10.1080/10789669.2011.558167

    Article  Google Scholar 

  51. D. Wang, Z. Liang, J. Zhou, H. Wang, The simulation research on the performance of chevron-type corrugated plate heat exchanger. Adv. Mater. Res. 383–390, 6502–6507 (2012). https://doi.org/10.4028/www.scientific.net/AMR.383-390.6502

    Article  Google Scholar 

  52. L. Zhang, D. Che, Influence of corrugation profile on the thermalhydraulic performance of cross-corrugated plates. Numer. Heat Transf. Part A Appl. 59, 267–296 (2011). https://doi.org/10.1080/10407782.2011.540963

    Article  ADS  Google Scholar 

  53. C.S. Guo, W.J. Du, L. Cheng, Characteristics of heat transfer and resistance of double chevron plate heat exchanges with different corrugation pitch. Adv. Intell. Soft Comput. 143, 169–174 (2012). https://doi.org/10.1007/978-3-642-27966-9_24

    Article  Google Scholar 

  54. K. Shaji, S.K. Das, Effect of plate characteristics on axial dispersion and heat transfer in plate heat exchangers. J. Heat Transfer 135, 1–11 (2013). https://doi.org/10.1115/1.4022993

    Article  Google Scholar 

  55. Y.H. Zhao, Y.F. Wu, H.J. Cheng, G.L. Zhu, Numerical simulation of corrugated depth on the performance of plate heat exchanger. Adv. Mater. Res. 860–863, 696–699 (2014). https://doi.org/10.4028/www.scientific.net/AMR.860-863.696

    Article  Google Scholar 

  56. M. Kan, O. Ipek, B. Gurel, Plate heat exchangers as a compact design and optimization of different channel angles. Acta Phys. Pol. A 128, 49–52 (2015). https://doi.org/10.12693/APhysPolA.128.B-49

    Article  Google Scholar 

  57. J. Lee, K.S. Lee, Friction and Colburn factor correlations and shape optimization of chevron-type plate heat exchangers. Appl. Therm. Eng. 89, 62–69 (2015). https://doi.org/10.1016/j.applthermaleng.2015.05.080

    Article  Google Scholar 

  58. M. Krishna, M. Swamy, G. Manjunath, N. Rao, B. Rao, P. Murthy, Heat transfer enhancement in corrugated plate heat exchanger. Br. J. Appl. Sci. Technol. 18, 1–14 (2016). https://doi.org/10.9734/bjast/2016/28438

    Article  Google Scholar 

  59. L. Vafajoo, K. Moradifar, S.M. Hosseini, B.H. Salman, Mathematical modelling of turbulent flow for flue gas-air Chevron type plate heat exchangers. Int. J. Heat Mass Transf. 97, 596–602 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.035

    Article  Google Scholar 

  60. B. Kumar, S.N. Singh, Study of pressure drop in single pass U-type plate heat exchanger. Exp. Therm. Fluid Sci. 87, 40–49 (2017). https://doi.org/10.1016/j.expthermflusci.2017.04.028

    Article  Google Scholar 

  61. B. Kılıç, O. İpek, Experimental investigation of heat transfer and effectiveness in corrugated plate heat exchangers having different chevron angles. Heat Mass Transf. Stoffuebertragung 53, 725–731 (2017). https://doi.org/10.1007/s00231-016-1817-2

    Article  ADS  Google Scholar 

  62. J. Yang, A. Jacobi, W. Liu, Heat transfer correlations for single-phase flow in plate heat exchangers based on experimental data. Appl. Therm. Eng. 113, 1547–1557 (2017). https://doi.org/10.1016/j.applthermaleng.2016.10.147

    Article  Google Scholar 

  63. Y. Zhicheng, W. Lijun, Y. Zhaokuo, L. Haowen, Shape optimization of welded plate heat exchangers based on grey correlation theory. Appl. Therm. Eng. 123, 761–769 (2017). https://doi.org/10.1016/j.applthermaleng.2017.05.005

    Article  Google Scholar 

  64. O.Y. Dutta, B. Nageswara Rao, Investigations on the performance of chevron type plate heat exchangers. Heat Mass Transf. Stoffuebertragung 54, 227–239 (2018). https://doi.org/10.1007/s00231-017-2107-3

    Article  ADS  Google Scholar 

  65. K. Nilpueng, T. Keawkamrop, H.S. Ahn, S. Wongwises, Effect of chevron angle and surface roughness on thermal performance of single-phase water flow inside a plate heat exchanger. Int. Commun. Heat Mass Transf. 91, 201–209 (2018). https://doi.org/10.1016/j.icheatmasstransfer.2017.12.009

    Article  Google Scholar 

  66. J.A.W. Gut, J.M. Pinto, Modeling of plate heat exchangers with generalized configurations. Int. J. Heat Mass Transf. 46, 2571–2585 (2003). https://doi.org/10.1016/S0017-9310(03)00040-1

    Article  Google Scholar 

  67. F.C.C. Galeazzo, R.Y. Miura, J.A.W. Gut, C.C. Tadini, Experimental and numerical heat transfer in a plate heat exchanger. Chem. Eng. Sci. 61, 7133–7138 (2006). https://doi.org/10.1016/j.ces.2006.07.029

    Article  Google Scholar 

  68. G.M. Zhang, M.C. Tian, S.J. Zhou, Simulation and analysis of flow pattern in cross-corrugated plate heat exchangers. J. Hydrodyn. 18, 547–551 (2006). https://doi.org/10.1016/S1001-6058(06)60133-9

    Article  ADS  MATH  Google Scholar 

  69. C.S. Fernandes, R.P. Dias, J.M. Nóbrega, J.M. Maia, Laminar flow in chevron-type plate heat exchangers: CFD analysis of tortuosity, shape factor and friction factor. Chem. Eng. Process. Process Intensif. 46, 825–833 (2007). https://doi.org/10.1016/j.cep.2007.05.011

    Article  Google Scholar 

  70. M. El Haj Assad, V.W. Kotiaho, Analysis of a parallel-flow heat exchanger with a heat source. Heat Transf. Eng. 32, 384–389 (2011). https://doi.org/10.1080/01457632.2010.483863

    Article  ADS  Google Scholar 

  71. I. Gherasim, N. Galanis, C.T. Nguyen, Heat transfer and fluid flow in a plate heat exchanger. Part II: Assessment of laminar and two-equation turbulent models. Int. J. Therm. Sci. 50, 1499–1511 (2011). https://doi.org/10.1016/j.ijthermalsci.2011.03.017

    Article  Google Scholar 

  72. V. Patil, H. Manjunath, B. Kusammanavar, Validation of plate heat exchanger design using CFD. Int. J. Mech. Eng. Robot. Res. 2, 222–230 (2013)

    Google Scholar 

  73. O. Giurgiu, A. Pleşa, L. Socaciu, Plate Heat Exchangers - Flow Analysis through Mini Channels. Energy Proc. 85, 244–251 (2016). https://doi.org/10.1016/j.egypro.2015.12.236

    Article  Google Scholar 

  74. A. Bejan, M. Alalaimi, S. Lorente, A.S. Sabau, J.W. Klett, Counterflow heat exchanger with core and plenums at both ends. Int. J. Heat Mass Transf. 99, 622–629 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.117

    Article  Google Scholar 

  75. M. Asif, H. Aftab, H.A. Syed, M.A. Ali, P.M. Muizz, Simulation of corrugated plate heat exchanger for heat and flow analysis. Int. J. Heat Technol. 35, 205–210 (2017). https://doi.org/10.18280/ijht.350127

    Article  Google Scholar 

  76. Y. Wang, S. You, W. Zheng, H. Zhang, X. Zheng, Q. Miao, State space model and robust control of plate heat exchanger for dynamic performance improvement. Appl. Therm. Eng. 128, 1588–1604 (2018). https://doi.org/10.1016/j.applthermaleng.2017.09.120

    Article  Google Scholar 

  77. T.W. Lim, Y.S. Choi, C.K. Lee, Design of plate heat exchangers for use in medium temperature organic Rankine cycles. Heat Mass Transf. Stoffuebertragung 55, 165–174 (2019). https://doi.org/10.1007/s00231-018-2446-8

    Article  ADS  Google Scholar 

  78. A.M. González, M. Vaz, P.S.B. Zdanski, A hybrid numerical-experimental analysis of heat transfer by forced convection in plate-finned heat exchangers. Appl. Therm. Eng. 148, 363–370 (2019). https://doi.org/10.1016/j.applthermaleng.2018.11.068

    Article  Google Scholar 

  79. J.S. Rincón Tabares, L. Perdomo-Hurtado, J.L. Aragón, Study of Gasketed-Plate Heat Exchanger performance based on energy efficiency indexes. Appl. Therm. Eng. 159, 113902 (2019). https://doi.org/10.1016/j.applthermaleng.2019.113902

    Article  Google Scholar 

  80. M.S. Islam, S.C. Saha, Heat transfer enhancement investigation in a novel flat plate heat exchanger. Int. J. Therm. Sci. 161, 106763 (2021)

    Article  Google Scholar 

  81. A. Norouzi, J. Sodagar-Abardeh, A. Arabkoohsar, K.A.R. Ismail, Investigating thermo-hydraulic behavior of pillow plate heat exchangers using entropy generation approach. Chem. Eng. Process. - Process Intensif. 174, 108887 (2022). https://doi.org/10.1016/j.cep.2022.108887

    Article  Google Scholar 

  82. A. Sadeghianjahromi, A. Jafari, C.-C. Wang, Numerical investigation of the effect of chevron angle on thermofluids characteristics of non-mixed and mixed brazed plate heat exchangers with experimental validation. Int. J. Heat Mass Transf. 184, 122278 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2021.122278

    Article  Google Scholar 

  83. M. Shirzad, S.S.M. Ajarostaghi, M.A. Delavar, K. Sedighi, Improve the thermal performance of the pillow plate heat exchanger by using nanofluid: Numerical simulation. Adv. Powder Technol. 30, 1356–1365 (2019). https://doi.org/10.1016/j.apt.2019.04.011

    Article  Google Scholar 

  84. A. Bhattad, J. Sarkar, P. Ghosh, Discrete phase numerical model and experimental study of hybrid nanofluid heat transfer and pressure drop in plate heat exchanger. Int. Commun. Heat Mass Transf. 91, 262–273 (2018). https://doi.org/10.1016/j.icheatmasstransfer.2017.12.020

    Article  Google Scholar 

  85. D. Zheng, J. Wang, Z. Chen, J. Baleta, B. Sundén, Performance analysis of a plate heat exchanger using various nanofluids. Int. J. Heat Mass Transf. (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.119993

    Article  Google Scholar 

  86. C.A.R. do Nascimento, V.C. Mariani, L. Dos. S. Coelho, Integrative numerical modeling and thermodynamic optimal design of counter-flow plate-fin heat exchanger applying neural networks. Int. J. Heat Mass Transf. 159, 120097 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.120097

    Article  Google Scholar 

  87. K. Li, J. Wen, S. Wang, Y. Li, Multi-parameter optimization of serrated fins in plate-fin heat exchanger based on fluid-structure interaction. Appl. Therm. Eng. (2020). https://doi.org/10.1016/j.applthermaleng.2020.115357

    Article  Google Scholar 

  88. A. Desideri et al., An experimental analysis of flow boiling and pressure drop in a brazed plate heat exchanger for organic Rankine cycle power systems. Int. J. Heat Mass Transf. 113, 6–21 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.063

    Article  Google Scholar 

  89. M. Imran, M. Usman, Y. Yang, B.S. Park, Flow boiling of R245fa in the brazed plate heat exchanger: Thermal and hydraulic performance assessment. Int. J. Heat Mass Transf. 110, 657–670 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.070

    Article  Google Scholar 

  90. W.Y. Saman, S. Alizadeh, An experimental study of a cross-flow type plate heat exchanger for dehumidification/cooling. Sol. Energy 73, 59–71 (2002). https://doi.org/10.1016/S0038-092X(01)00078-0

    Article  ADS  Google Scholar 

  91. J. Zhang, A. Desideri, M.R. Kærn, T.S. Ommen, J. Wronski, F. Haglind, Flow boiling heat transfer and pressure drop characteristics of R134a, R1234yf and R1234ze in a plate heat exchanger for organic Rankine cycle units. Int. J. Heat Mass Transf. 108, 1787–1801 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.026

    Article  Google Scholar 

  92. D. Kim, D.C. Lee, D.S. Jang, Y. Jeon, Y. Kim, Comparative evaluation of flow boiling heat transfer characteristics of R-1234ze(E) and R-134a in plate heat exchangers with different Chevron angles. Appl. Therm. Eng. 132, 719–729 (2018). https://doi.org/10.1016/j.applthermaleng.2018.01.019

    Article  Google Scholar 

  93. D.H. Han, K.J. Lee, Y.H. Kim, Experiments on the characteristics of evaporation of R410A in brazed plate heat exchangers with different geometric configurations. Appl. Therm. Eng. 23, 1209–1225 (2003). https://doi.org/10.1016/S1359-4311(03)00061-9

    Article  Google Scholar 

  94. D.H. Han, K.J. Lee, Y.H. Kim, The characteristics of condensation in brazed plate heat exchangers with different chevron angles. J. Korean Phys. Soc. 43, 66–73 (2003)

    Google Scholar 

  95. R. Würfel, N. Ostrowski, Experimental investigations of heat transfer and pressure drop during the condensation process within plate heat exchangers of the herringbone-type. Int. J. Therm. Sci. 43, 59–68 (2004). https://doi.org/10.1016/S1290-0729(03)00099-1

    Article  Google Scholar 

  96. E. Djordjevic, S. Kabelac, Flow boiling of R134a and ammonia in a plate heat exchanger. Int. J. Heat Mass Transf. 51, 6235–6242 (2008). https://doi.org/10.1016/j.ijheatmasstransfer.2008.01.042

    Article  Google Scholar 

  97. N. Hayes, A. Jokar, Z.H. Ayub, Study of carbon dioxide condensation in chevron plate exchangers; Heat transfer analysis. Int. J. Heat Mass Transf. 54, 1121–1131 (2011). https://doi.org/10.1016/j.ijheatmasstransfer.2010.11.010

    Article  Google Scholar 

  98. N. Hayes, A. Jokar, Z.H. Ayub, Study of carbon dioxide condensation in chevron plate exchangers; Pressure drop analysis. Int. J. Heat Mass Transf. 55, 2916–2925 (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2012.02.013

    Article  Google Scholar 

  99. J. Huang, T.J. Sheer, M. Bailey-Mcewan, Heat transfer and pressure drop in plate heat exchanger refrigerant evaporators. Int. J. Refrig. 35, 325–335 (2012). https://doi.org/10.1016/j.ijrefrig.2011.11.002

    Article  Google Scholar 

  100. M.S. Khan, T.S. Khan, M.-C. Chyu, Z.H. Ayub, Experimental investigation of evaporation heat transfer and pressure drop of ammonia in a 30 chevron plate heat exchanger. Int. J. Refrig. 35, 1757–1765 (2012)

    Article  Google Scholar 

  101. T.S. Khan, M.S. Khan, M.C. Chyu, Z.H. Ayub, Experimental investigation of evaporation heat transfer and pressure drop of ammonia in a 60° chevron plate heat exchanger. Int. J. Refrig. 35, 336–348 (2012). https://doi.org/10.1016/j.ijrefrig.2011.10.018

    Article  Google Scholar 

  102. A. Müller, S. Kabelac, The experimental determination of heat transfer and pressure drop during condensation in a plate heat exchanger with corrugated plates. WIT Trans. Eng. Sci. 83, 337–349 (2014). https://doi.org/10.2495/HT140301

    Article  Google Scholar 

  103. M.S. Khan, T.S. Khan, M.C. Chyu, Z.H. Ayub, Evaporation heat transfer and pressure drop of ammonia in a mixed configuration chevron plate heat exchanger. Int. J. Refrig. 41, 92–102 (2014). https://doi.org/10.1016/j.ijrefrig.2013.12.015

    Article  Google Scholar 

  104. G. Bamorovat Abadi, D.Y. Kim, S.Y. Yoon, K.C. Kim, Thermal performance of a 10-kW phase-change plate heat exchanger with metal foam filled channels. Appl. Therm. Eng. 99, 790–801 (2016). https://doi.org/10.1016/j.applthermaleng.2016.01.156

    Article  Google Scholar 

  105. R. Eldeeb, V. Aute, R. Radermacher, A survey of correlations for heat transfer and pressure drop for evaporation and condensation in plate heat exchangers. Int. J. Refrig. 65, 12–26 (2016). https://doi.org/10.1016/j.ijrefrig.2015.11.013

    Article  Google Scholar 

  106. K. Miyata, H. Mori, T. Taniguchi, S. Umezawa, K. Sugita, Effect of the Chevron angle on cooling heat transfer characteristics of supercritical pressure fluids in plate heat exchangers. Heat Transf. Eng. 40, 1007–1022 (2019). https://doi.org/10.1080/01457632.2018.1450334

    Article  ADS  Google Scholar 

  107. A. Durmuş, H. Benli, I. Kurtbaş, H. Gül, Investigation of heat transfer and pressure drop in plate heat exchangers having different surface profiles. Int. J. Heat Mass Transf. 52, 1451–1457 (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2008.07.052

    Article  Google Scholar 

  108. K. Nilpueng, S. Wongwises, Experimental study of single-phase heat transfer and pressure drop inside a plate heat exchanger with a rough surface. Exp. Therm. Fluid Sci. 68, 268–275 (2015). https://doi.org/10.1016/j.expthermflusci.2015.04.009

    Article  Google Scholar 

  109. K. Subramani, K. Logesh, S. Kolappan, S. Karthik, Experimental investigation on heat transfer characteristics of heat exchanger with bubble fin assistance. Int. J. Ambient Energy 41, 617–620 (2020). https://doi.org/10.1080/01430750.2018.1472654

    Article  Google Scholar 

  110. S. Al, M.S. Islam, S.C. Saha, Heat transfer enhancement of modified flat plate heat exchanger. Appl. Therm. Eng. 186, 116533 (2021). https://doi.org/10.1016/j.applthermaleng.2020.116533

    Article  Google Scholar 

  111. Y. Zhang, C. Jiang, Z. Yang, Y. Zhang, B. Bai, Numerical study on heat transfer enhancement in capsule-type plate heat exchangers. Appl. Therm. Eng. 108, 1237–1242 (2016). https://doi.org/10.1016/j.applthermaleng.2016.08.033

    Article  Google Scholar 

  112. Z. jian LUAN, G. min ZHANG, M. cheng TIAN, and M. xiu FAN, “Flow resistance and heat transfer characteristics of a new-type plate heat exchanger,” J. Hydrodyn., vol. 20, no. 4, pp. 524–529, 2008, doi: https://doi.org/10.1016/S1001-6058(08)60089-X.

  113. J.Y. Jeong, H. Hong, S.K. Kim, Y.T. Kang, Impact of plate design on the performance of welded type plate heat exchangers for sorption cycles. Int. J. Refrig. 32, 705–711 (2009). https://doi.org/10.1016/j.ijrefrig.2009.01.028

    Article  Google Scholar 

  114. M. Kim, Y.J. Baik, S.R. Park, H.S. Ra, H. Lim, Experimental study on corrugated cross-flow air-cooled plate heat exchangers. Exp. Therm. Fluid Sci. 34, 1265–1272 (2010). https://doi.org/10.1016/j.expthermflusci.2010.05.007

    Article  Google Scholar 

  115. D.B. Monteiro, P.E.B. de Mello, Thermal performance and pressure drop in a ceramic heat exchanger evaluated using CFD simulations. Energy 45, 489–496 (2012). https://doi.org/10.1016/j.energy.2012.02.012

    Article  Google Scholar 

  116. J.H. Doo, M.Y. Ha, J.K. Min, R. Stieger, A. Rolt, C. Son, An investigation of cross-corrugated heat exchanger primary surfaces for advanced intercooled-cycle aero engines (Part-I: Novel geometry of primary surface). Int. J. Heat Mass Transf. 55, 5256–5267 (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.034

    Article  Google Scholar 

  117. J.H. Doo, M.Y. Ha, J.K. Min, R. Stieger, A. Rolt, C. Son, An investigation of cross-corrugated heat exchanger primary surfaces for advanced intercooled-cycle aero engines (Part-II: Design optimization of primary surface). Int. J. Heat Mass Transf. 61, 138–148 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.01.084

    Article  Google Scholar 

  118. H.H.S. Villanueva, P.E.B. de Mello, Heat transfer and pressure drop correlations for finned plate ceramic heat exchangers. Energy 88, 118–125 (2015). https://doi.org/10.1016/j.energy.2015.04.017

    Article  Google Scholar 

  119. J.M. Lee, P.W. Kwan, C.M. Son, M.Y. Ha, Characterizations of aerothermal performance of novel cross-corrugated plate heat exchangers for advanced cycle aero-engines. Int. J. Heat Mass Transf. 85, 166–180 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.127

    Article  Google Scholar 

  120. J. Wajs, D. Mikielewicz, Influence of metallic porous microlayer on pressure drop and heat transfer of stainless steel plate heat exchanger. Appl. Therm. Eng. 93, 1337–1346 (2016). https://doi.org/10.1016/j.applthermaleng.2015.08.101

    Article  Google Scholar 

  121. C. Zhang, D. Wang, Y. Han, Y. Zhu, X. Peng, Experimental and numerical investigation on the exergy and entransy performance of a novel plate heat exchanger. Exp. Heat Transf. 30, 162–177 (2017). https://doi.org/10.1080/08916152.2016.1179358

    Article  ADS  Google Scholar 

  122. G. Bamorovat Abadi, C. Moon, K.C. Kim, Experimental study on single-phase heat transfer and pressure drop of refrigerants in a plate heat exchanger with metal-foam-filled channels. Appl. Therm. Eng. 102, 423–431 (2016). https://doi.org/10.1016/j.applthermaleng.2016.03.099

    Article  Google Scholar 

  123. R.L. Amalfi, F. Vakili-Farahani, J.R. Thome, Flow boiling and frictional pressure gradients in plate heat exchangers. Part 1: Review and experimental database. Int. J. Refrig. 61, 166–184 (2016). https://doi.org/10.1016/j.ijrefrig.2015.07.010

    Article  Google Scholar 

  124. J. Soontarapiromsook, O. Mahian, A.S. Dalkilic, S. Wongwises, Effect of surface roughness on the condensation of R-134a in vertical chevron gasketed plate heat exchangers. Exp. Therm. Fluid Sci. 91, 54–63 (2018). https://doi.org/10.1016/j.expthermflusci.2017.09.015

    Article  Google Scholar 

  125. S.K. Das, N. Putra, P. Thiesen, W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids. J. Heat Transfer 125, 567–574 (2003). https://doi.org/10.1115/1.1571080

    Article  Google Scholar 

  126. Y. Xuan, Q. Li, Heat transfer enhancement of nanofluids. Int. J. Heat Fluid Flow 21, 58–64 (2000). https://doi.org/10.1016/S0142-727X(99)00067-3

    Article  Google Scholar 

  127. M. Attalla, H.M. Maghrabie, Investigation of effectiveness and pumping power of plate heat exchanger with rough surface. Chem. Eng. Sci. 211, 115277 (2020). https://doi.org/10.1016/j.ces.2019.115277

    Article  Google Scholar 

  128. S.K. Das, S.U.S. Choi, H.E. Patel, Heat transfer in nanofluids - A review. Heat Transf. Eng. 27, 3–19 (2006). https://doi.org/10.1080/01457630600904593

    Article  ADS  Google Scholar 

  129. T. Maré, S. Halelfadl, O. Sow, P. Estellé, S. Duret, F. Bazantay, Comparison of the thermal performances of two nanofluids at low temperature in a plate heat exchanger. Exp. Therm. Fluid Sci. 35, 1535–1543 (2011). https://doi.org/10.1016/j.expthermflusci.2011.07.004

    Article  Google Scholar 

  130. S.D. Pandey, V.K. Nema, Experimental analysis of heat transfer and friction factor of nanofluid as a coolant in a corrugated plate heat exchanger. Exp. Therm. Fluid Sci. 38, 248–256 (2012). https://doi.org/10.1016/j.expthermflusci.2011.12.013

    Article  Google Scholar 

  131. A.E. Kabeel, T. Abou El Maaty, Y. El Samadony, The effect of using nano-particles on corrugated plate heat exchanger performance. Appl. Therm. Eng. 52, 221–229 (2013). https://doi.org/10.1016/j.applthermaleng.2012.11.027

    Article  Google Scholar 

  132. A.K. Tiwari, P. Ghosh, J. Sarkar, Heat transfer and pressure drop characteristics of CeO2/water nanofluid in plate heat exchanger. Appl. Therm. Eng. 57, 24–32 (2013). https://doi.org/10.1016/j.applthermaleng.2013.03.047

    Article  Google Scholar 

  133. A. Jokar, S.P. O’Halloran, Heat transfer and fluid flow analysis of nanofluids in corrugated plate heat exchangers using computational fluid dynamics simulation. J. Therm. Sci. Eng. Appl. 5, 1–10 (2013). https://doi.org/10.1115/1.4007777

    Article  Google Scholar 

  134. A. Tohidi, S.M. Hosseinalipour, P. Taheri, N.M. Nouri, A.S. Mujumdar, Chaotic advection induced heat transfer enhancement in a chevron-type plate heat exchanger. Heat Mass Transf. Stoffuebertragung 49, 1535–1548 (2013). https://doi.org/10.1007/s00231-013-1180-5

    Article  ADS  Google Scholar 

  135. C. Gulenoglu, F. Akturk, S. Aradag, N. Sezer Uzol, S. Kakac, Experimental comparison of performances of three different plates for gasketed plate heat exchangers. Int. J. Therm. Sci. 75, 249–256 (2014). https://doi.org/10.1016/j.ijthermalsci.2013.06.012

    Article  Google Scholar 

  136. J. Lee, K.S. Lee, Flow characteristics and thermal performance in chevron type plate heat exchangers. Int. J. Heat Mass Transf. 78, 699–706 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.033

    Article  Google Scholar 

  137. M.A. Khairul, M.A. Alim, I.M. Mahbubul, R. Saidur, A. Hepbasli, A. Hossain, Heat transfer performance and exergy analyses of a corrugated plate heat exchanger using metal oxide nanofluids. Int. Commun. Heat Mass Transf. 50, 8–14 (2014). https://doi.org/10.1016/j.icheatmasstransfer.2013.11.006

    Article  Google Scholar 

  138. J. Ham, J. Kim, H. Cho, Theoretical analysis of thermal performance in a plate type liquid heat exchanger using various nanofluids based on LiBr solution. Appl. Therm. Eng. 108, 1020–1032 (2016). https://doi.org/10.1016/j.applthermaleng.2016.07.196

    Article  Google Scholar 

  139. A.M. Abed, M.A. Alghoul, K. Sopian, H.A. Mohammed, H. Majdi, A.N. Al-Shamani, Design characteristics of corrugated trapezoidal plate heat exchangers using nanofluids. Chem. Eng. Process. Process Intensif. 87, 88–103 (2015). https://doi.org/10.1016/j.cep.2014.11.005

    Article  Google Scholar 

  140. D. Huang, Z. Wu, B. Sunden, Pressure drop and convective heat transfer of Al2O3/water and MWCNT/water nanofluids in a chevron plate heat exchanger. Int. J. Heat Mass Transf. 89, 620–626 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.082

    Article  Google Scholar 

  141. M. Goodarzi et al., Investigation of heat transfer and pressure drop of a counter flow corrugated plate heat exchanger using MWCNT based nanofluids. Int. Commun. Heat Mass Transf. 66, 172–179 (2015). https://doi.org/10.1016/j.icheatmasstransfer.2015.05.002

    Article  Google Scholar 

  142. V. Kumar, A.K. Tiwari, S.K. Ghosh, Application of nanofluids in plate heat exchanger: A review. Energy Convers. Manag. 105, 1017–1036 (2015). https://doi.org/10.1016/j.enconman.2015.08.053

    Article  Google Scholar 

  143. A. Behrangzade, M.M. Heyhat, The effect of using nano-silver dispersed water based nanofluid as a passive method for energy efficiency enhancement in a plate heat exchanger. Appl. Therm. Eng. 102, 311–317 (2016). https://doi.org/10.1016/j.applthermaleng.2016.03.051

    Article  Google Scholar 

  144. B. Sun, C. Peng, R. Zuo, D. Yang, H. Li, Investigation on the flow and convective heat transfer characteristics of nanofluids in the plate heat exchanger, vol. 76 (Elsevier, Amsterdam, 2016)

    Google Scholar 

  145. S.H. Pourhoseini, N. Naghizadeh, H. Hoseinzadeh, Effect of silver-water nanofluid on heat transfer performance of a plate heat exchanger: An experimental and theoretical study. Powder Technol. 332, 279–286 (2018). https://doi.org/10.1016/j.powtec.2018.03.058

    Article  Google Scholar 

  146. A. Khanlari, A. Sözen, H.İ Variyenli, Simulation and experimental analysis of heat transfer characteristics in the plate type heat exchangers using TiO2/water nanofluid. Int. J. Numer. Methods Heat Fluid Flow 29, 1343–1362 (2019). https://doi.org/10.1108/HFF-05-2018-0191

    Article  Google Scholar 

  147. N.S. Pandya, H. Shah, M. Molana, A.K. Tiwari, Heat transfer enhancement with nanofluids in plate heat exchangers: A comprehensive review. Eur. J. Mech. B/Fluids 81, 173–190 (2020). https://doi.org/10.1016/j.euromechflu.2020.02.004

    Article  ADS  MATH  Google Scholar 

  148. B. Saleh, L.S. Sundar, Experimental study on heat transfer, friction factor, entropy and exergy efficiency analyses of a corrugated plate heat exchanger using Ni/water nanofluids. Int. J. Therm. Sci. 165, 106935 (2021). https://doi.org/10.1016/j.ijthermalsci.2021.106935

    Article  Google Scholar 

  149. I.A. Stogiannis, A.A. Mouza, S.V. Paras, Efficacy of SiO2 nanofluids in a miniature plate heat exchanger with undulated surface. Int. J. Therm. Sci. 92, 230–238 (2015). https://doi.org/10.1016/j.ijthermalsci.2015.01.035

    Article  Google Scholar 

  150. Z. Wang, Z. Wu, F. Han, L. Wadsö, B. Sundén, Experimental comparative evaluation of a graphene nanofluid coolant in miniature plate heat exchanger. Int. J. Therm. Sci. 130, 148–156 (2018). https://doi.org/10.1016/j.ijthermalsci.2018.04.021

    Article  Google Scholar 

  151. M.N. Pantzali, A.A. Mouza, S.V. Paras, Investigating the efficacy of nanofluids as coolants in plate heat exchangers (PHE). Chem. Eng. Sci. 64, 3290–3300 (2009). https://doi.org/10.1016/j.ces.2009.04.004

    Article  Google Scholar 

  152. R. Barzegarian, M.K. Moraveji, A. Aloueyan, Experimental investigation on heat transfer characteristics and pressure drop of BPHE (brazed plate heat exchanger) using TiO2-water nanofluid. Exp. Therm. Fluid Sci. 74, 11–18 (2016). https://doi.org/10.1016/j.expthermflusci.2015.11.018

    Article  Google Scholar 

  153. D.R. Ray, D.K. Das, R.S. Vajjha, Experimental and numerical investigations of nanofluids performance in a compact minichannel plate heat exchanger. Int. J. Heat Mass Transf. 71, 732–746 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.072

    Article  Google Scholar 

  154. Z.X. Li, U. Khaled, A.A.A.A. Al-Rashed, M. Goodarzi, M.M. Sarafraz, R. Meer, Heat transfer evaluation of a micro heat exchanger cooling with spherical carbon-acetone nanofluid. Int. J. Heat Mass Transf. (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2019.119124

    Article  Google Scholar 

  155. A.A. Abbasian Arani, J. Amani, Experimental investigation of diameter effect on heat transfer performance and pressure drop of TiO2-water nanofluid. Exp. Therm. Fluid Sci. 44, 520–533 (2013). https://doi.org/10.1016/j.expthermflusci.2012.08.014

    Article  Google Scholar 

  156. C. Qi, T. Luo, M. Liu, F. Fan, Y. Yan, Experimental study on the flow and heat transfer characteristics of nanofluids in double-tube heat exchangers based on thermal efficiency assessment. Energy Convers. Manag. 197, 111877 (2019). https://doi.org/10.1016/j.enconman.2019.111877

    Article  Google Scholar 

  157. M.H. Fard, M.R. Talaie, S. Nasr, Numerical and experimental investigation of heat transfer of zno/water nanofluid in the concentric tube and plate heat exchangers. Therm. Sci. 15, 183–194 (2011). https://doi.org/10.2298/TSCI091103048H

    Article  Google Scholar 

  158. M. Hojjat, S.G. Etemad, R. Bagheri, J. Thibault, Convective heat transfer of non-Newtonian nanofluids through a uniformly heated circular tube. Int. J. Therm. Sci. 50, 525–531 (2011). https://doi.org/10.1016/j.ijthermalsci.2010.11.006

    Article  Google Scholar 

  159. M.H. Kayhani, H. Soltanzadeh, M.M. Heyhat, M. Nazari, F. Kowsary, Experimental study of convective heat transfer and pressure drop of TiO 2/water nanofluid. Int. Commun. Heat Mass Transf. 39, 456–462 (2012). https://doi.org/10.1016/j.icheatmasstransfer.2012.01.004

    Article  Google Scholar 

  160. R.N. Radkar, B.A. Bhanvase, D.P. Barai, S.H. Sonawane, Intensified convective heat transfer using ZnO nanofluids in heat exchanger with helical coiled geometry at constant wall temperature. Mater. Sci. Energy Technol. 2, 161–170 (2019). https://doi.org/10.1016/j.mset.2019.01.007

    Article  Google Scholar 

  161. P. C. Mukesh Kumar and M. Chandrasekar, “CFD analysis on heat and flow characteristics of double helically coiled tube heat exchanger handling MWCNT/water nanofluids,” Heliyon, vol. 5, no. 7, p. e02030, 2019, doi: https://doi.org/10.1016/j.heliyon.2019.e02030.

  162. A. Bhattad, J. Sarkar, P. Ghosh, Experimentation on effect of particle ratio on hydrothermal performance of plate heat exchanger using hybrid nanofluid. Appl. Therm. Eng. 162, 114309–114319 (2019). https://doi.org/10.1016/j.applthermaleng.2019.114309

    Article  Google Scholar 

  163. S. Rostami, A. Aghaei, A. Hassani, J. Hossein, M. Hezaveh, and M. Sharifpur, “Thermal – hydraulic efficiency management of spiral heat exchanger filled with Cu – ZnO / water hybrid nanofluid,” no. mm, 2020.

  164. F. Afshari, A comprehensive survey on utilization of hybrid nanofluid in plate heat exchanger with various number of plates. Int. J. Numer. Methods Heat Fluid Flow 32, 241–264 (2022). https://doi.org/10.1108/HFF-11-2020-0743

    Article  Google Scholar 

  165. I. Fazeli, M.R. Sarmasti Emami, A. Rashidi, Investigation and optimization of the behavior of heat transfer and flow of MWCNT-CuO hybrid nanofluid in a brazed plate heat exchanger using response surface methodology. Int. Commun. Heat Mass Transf. 122, 105175 (2021). https://doi.org/10.1016/j.icheatmasstransfer.2021.105175

    Article  Google Scholar 

  166. A. Zamzamian, S.N. Oskouie, A. Doosthoseini, A. Joneidi, M. Pazouki, Experimental investigation of forced convective heat transfer coefficient in nanofluids of Al2O3/EG and CuO/EG in a double pipe and plate heat exchangers under turbulent flow. Exp. Therm. Fluid Sci. 35, 495–502 (2011). https://doi.org/10.1016/j.expthermflusci.2010.11.013

    Article  Google Scholar 

  167. M.M. Elias, R. Saidur, N.A. Rahim, M.R. Sohel, I.M. Mahbubul, Performance investigation of a plate heat exchanger using nanofluid with different chevron angle. Adv. Mater. Res. 832, 254–259 (2014). https://doi.org/10.4028/www.scientific.net/AMR.832.254

    Article  Google Scholar 

  168. A.K. Tiwari, P. Ghosh, J. Sarkar, H. Dahiya, J. Parekh, Numerical investigation of heat transfer and fluid flow in plate heat exchanger using nanofluids. Int. J. Therm. Sci. 85, 93–103 (2014). https://doi.org/10.1016/j.ijthermalsci.2014.06.015

    Article  Google Scholar 

  169. A.K. Tiwari, P. Ghosh, J. Sarkar, Particle concentration levels of various nanofluids in plate heat exchanger for best performance. Int. J. Heat Mass Transf. 89, 1110–1118 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.118

    Article  Google Scholar 

  170. M. Unverdi, Y. Islamoglu, Characteristics of heat transfer and pressure drop in a chevron-type plate heat exchanger with Al2O3/water nanofluids. Therm. Sci. 21, 2379–2391 (2017)

    Article  Google Scholar 

  171. G.S. Prashant, T. Sarao, Experimental analysis of heat transfer and friction factor in plate heat exchanger with different or. Int. J. Eng. Trans. A Basics 29, 1450–1458 (2016). https://doi.org/10.5829/idosi.ije.2016.29.10a.16

    Article  Google Scholar 

  172. Z. Taghizadeh-Tabari, S. Zeinali Heris, M. Moradi, M. Kahani, The study on application of TiO2/water nanofluid in plate heat exchanger. Renew. Sustain. Energy Rev. 58, 1318–1326 (2016). https://doi.org/10.1016/j.rser.2015.12.292

    Article  Google Scholar 

  173. V. Kumar, A.K. Tiwari, S.K. Ghosh, Effect of variable spacing on performance of plate heat exchanger using nanofluids. Energy 114, 1107–1119 (2016). https://doi.org/10.1016/j.energy.2016.08.091

    Article  Google Scholar 

  174. V. Kumar, A.K. Tiwari, S.K. Ghosh, Effect of chevron angle on heat transfer performance in plate heat exchanger using ZnO/water nanofluid. Energy Convers. Manag. 118, 142–154 (2016). https://doi.org/10.1016/j.enconman.2016.03.086

    Article  Google Scholar 

  175. M.M. Sarafraz, F. Hormozi, Heat transfer, pressure drop and fouling studies of multi-walled carbon nanotube nano-fluids inside a plate heat exchanger, vol. 72 (Elsevier, Amsterdam, 2016)

    Google Scholar 

  176. D. Huang, Z. Wu, B. Sunden, Effects of hybrid nanofluid mixture in plate heat exchangers. Exp. Therm. Fluid Sci. 72, 190–196 (2016). https://doi.org/10.1016/j.expthermflusci.2015.11.009

    Article  Google Scholar 

  177. M.M. Elias, R. Saidur, R. Ben-Mansour, A. Hepbasli, N.A. Rahim, K. Jesbains, Heat transfer and pressure drop characteristics of a plate heat exchanger using water based Al2O3 nanofluid for 30° and 60° chevron angles. Heat Mass Transf. Stoffuebertragung 54, 2907–2916 (2018). https://doi.org/10.1007/s00231-018-2335-1

    Article  ADS  Google Scholar 

  178. M. Attalla, H.M. Maghrabie, An experimental study on heat transfer and fluid flow of rough plate heat exchanger using Al2O3/water nanofluid. Exp. Heat Transf. 33, 261–281 (2020). https://doi.org/10.1080/08916152.2019.1625469

    Article  ADS  Google Scholar 

  179. B. Bansal, H. Müller-Steinhagen, X.D. Chen, Performance of plate heat exchangers during calcium sulphate fouling - investigation with an in-line filter. Chem. Eng. Process. Process Intensif. 39, 507–519 (2000). https://doi.org/10.1016/S0255-2701(00)00098-2

    Article  Google Scholar 

  180. N. Andritsos, A.J. Karabelas, Calcium carbonate scaling in a plate heat exchanger in the presence of particles. Int. J. Heat Mass Transf. 46, 4613–4627 (2003). https://doi.org/10.1016/S0017-9310(03)00308-9

    Article  Google Scholar 

  181. B. Bansal, Hans MÜller-Steinhage, Comparison of crystallization fouling in plate and double-pipe heat exchangers. Heat Transf. Eng. 22, 13–25 (2001). https://doi.org/10.1080/01457630117263

    Article  ADS  Google Scholar 

  182. P. Sriyutha Murthy et al., Evaluation of sodium hypochlorite for fouling control in plate heat exchanger. Int. Biodeterior. Biodegrad. 55, 161–170 (2005). https://doi.org/10.1016/j.ibiod.2004.11.001

    Article  Google Scholar 

  183. M.G. Mwaba, M.R. Golriz, J. Gu, A semi-empirical correlation for crystallization fouling on heat exchange surfaces. Appl. Therm. Eng. 26, 440–447 (2006). https://doi.org/10.1016/j.applthermaleng.2005.05.021

    Article  Google Scholar 

  184. B. Bansal, X.D. Chen, H. Müller-Steinhagen, Analysis of ‘classical’ deposition rate law for crystallisation fouling. Chem. Eng. Process. Process Intensif. 47, 1201–1210 (2008). https://doi.org/10.1016/j.cep.2007.03.016

    Article  Google Scholar 

  185. Y. Mahdi, A. Mouheb, L. Oufer, A dynamic model for milk fouling in a plate heat exchanger. Appl. Math. Model. 33, 648–662 (2009). https://doi.org/10.1016/j.apm.2007.11.030

    Article  MATH  Google Scholar 

  186. A.B. Kananeh, E. Scharnbeck, U.D. Kück, N. Räbiger, Reduction of milk fouling inside gasketed plate heat exchanger using nano-coatings. Food Bioprod. Process. 88, 349–356 (2010). https://doi.org/10.1016/j.fbp.2010.09.010

    Article  Google Scholar 

  187. C. Lei, Z. Peng, T. Day, X. Yan, X. Bai, C. Yuan, Experimental observation of surface morphology effect on crystallization fouling in plate heat exchangers. Int. Commun. Heat Mass Transf. 38, 25–30 (2011). https://doi.org/10.1016/j.icheatmasstransfer.2010.10.006

    Article  Google Scholar 

  188. M.M. Abu-Khader, Plate heat exchangers: recent advances. Renew. Sustain. Energy Rev. 16, 1883–1891 (2012). https://doi.org/10.1016/j.rser.2012.01.009

    Article  Google Scholar 

  189. C. Boxler, W. Augustin, S. Scholl, Composition of milk fouling deposits in a plate heat exchanger under pulsed flow conditions. J. Food Eng. 121, 1–8 (2014). https://doi.org/10.1016/j.jfoodeng.2013.08.003

    Article  Google Scholar 

  190. M.M. Sarafraz, F. Hormozi, Convective boiling and particulate fouling of stabilized CuO-ethylene glycol nanofluids inside the annular heat exchanger. Int. Commun. Heat Mass Transf. 53, 116–123 (2014). https://doi.org/10.1016/j.icheatmasstransfer.2014.02.019

    Article  Google Scholar 

  191. Z.T. Tabari, S.Z. Heris, Heat transfer performance of milk pasteurization plate heat exchangers using MWCNT/water nanofluid. J. Dispers. Sci. Technol. 36, 196–204 (2015). https://doi.org/10.1080/01932691.2014.894917

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Singh, S.K. & Sharma, D. A Comprehensive Review on Thermal Performance Enhancement of Plate Heat Exchanger. Int J Thermophys 43, 109 (2022). https://doi.org/10.1007/s10765-022-03036-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03036-7

Keywords

Navigation