Skip to main content
Log in

Predicting Density and Viscosity for Liquid Metals and Alloys Using Machine Learning

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Density and viscosity are fundamental properties for liquid metals and alloys, however, accurate prediction of their values for multicomponent systems is still very challenging. In an effort to construct accurate density and viscosity models for multicomponent liquid alloys, machine learning methods (random forest and neural network) and conventional regression methods (linear, Arrhenius and MYEGA) were investigated in this work. The models were optimized based on a very large and comprehensive experimental database, which consisted of 34,232 density data and 19,211 viscosity data in 50 elements. The unary, binary, and ternary data was used as training dataset, the multicomponent data as testing dataset. For density modeling, the regression method results in very low testing error, whereas both random forest and neural network methods suffer from overfitting. The inclusion of an artificial 10-order equiatomic density dataset calculated by linear regression model significantly reduces the overfitting in machine learning density models, with testing error reduced from 0.231 g⋅cm−3 to 0.156 g⋅cm−3 for neural network model. For viscosity modeling, the random forest model suffers significantly from overfitting; the neural network model has relatively low overall training and testing errors than regression method, but the high viscosity region is underfitted. Augmentation of high viscosity data significantly improves the underfitting for the neural network viscosity model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Iida, R.I. Guthrie, The Thermophysical Properties of Metallic Liquids: Volume 1: Fundamentals. (Oxford University Press, Oxford, 2015)

  2. J. Brillo, Thermophysical Properties of Multicomponent Liquid Alloys. (Walter de Gruyter GmbH, Berlin/Boston, 2016)

  3. T. Iida, R.I. Guthrie, The Thermophysical Properties of Metallic Liquids: Volume 2: Predictive models. (Oxford University Press, Oxford, 2015),

  4. P. Quested, A. Dinsdale, J. Robinson, K. Mills, J. Hunt, (2000)

  5. S.W. Strauss, Nucl. Sci. Eng. 12, 436 (1962)

    Article  Google Scholar 

  6. L. Battezzati, A.L. Greer, Acta Mater. 37, 1791 (1989)

    Article  Google Scholar 

  7. A. Dinsdale, P. Quested, J. Mater. Sci. 39, 7221 (2004)

    Article  ADS  Google Scholar 

  8. R.F. Brooks, A.T. Dinsdale, P.N. Quested, Meas. Sci. Technol. 16, 354 (2005)

    Article  ADS  Google Scholar 

  9. J. Cheng, J. Gröbner, N. Hort, K.U. Kainer, R. Schmid-Fetzer, Meas. Sci. Technol. 25, 062001 (2014)

    Article  ADS  Google Scholar 

  10. S. Gao, K. Jiao, J. Zhang, Philos. Mag. 99, 853 (2019)

    Article  ADS  Google Scholar 

  11. M. Mohr, R. Wunderlich, Y. Dong, D. Furrer, H.-J. Fecht, Adv. Eng. Mater. 22, 1901228 (2020)

    Article  Google Scholar 

  12. Q. Wu, Z. Wang, X. Hu, T. Zheng, Z. Yang, F. He, J. Li, J. Wang, Acta Mater. 182, 278 (2020)

    Article  ADS  Google Scholar 

  13. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (The MIT Press, Cambridge, 2016)

    MATH  Google Scholar 

  14. Z. Nieto, V.M.K. Kotteda, A. Rodriguez, S.S. Kumar, V. Kumar, A. Bronson, In: Proceedings of the ASME 2018 5th Joint US-European Fluids Engineering Summer Conference, (Montreal, Quebec, 2018)

  15. L. Zuo, P. Ni, T. Tanaka, Y. Li, Metall. Mater. Trans. B 52, 17 (2021)

    Article  Google Scholar 

  16. A. Seko, T. Maekawa, K. Tsuda, I. Tanaka, Phys. Rev. B 89, 054303 (2014)

    Article  ADS  Google Scholar 

  17. L. Ward, S.C. O’Keeffe, J. Stevick, G.R. Jelbert, M. Aykol, C. Wolverton, Acta Mater. 159, 102 (2018)

    Article  ADS  Google Scholar 

  18. M.J. Assael, K. Kakosimos, R.M. Banish, J. Brillo, I. Egry, R. Brooks, P.N. Quested, K.C. Mills, A. Nagashima, Y. Sato, W.A. Wakeham, J. Phys. Chem. Ref. Data 35, 285 (2006)

    Article  ADS  Google Scholar 

  19. M.R. Dobbelaere, P.P. Plehiers, R. Van de Vijver, C.V. Stevens, K.M. Van Geem, 7, 1201 (2021).

  20. J. Wei, X. Chu, X.-Y. Sun, K. Xu, H.-X. Deng, J. Chen, Z. Wei, M. Lei 1, 338 (2019)

    Google Scholar 

  21. Y. LeCun, Y. Bengio, G. Hinton 521, 436 (2015)

    Google Scholar 

  22. J. Ma, R.P. Sheridan, A. Liaw, G.E. Dahl, V. Svetnik, 55, 263 (2015).

  23. F. Eibe, M.A. Hall, I.H. Witten, The WEKA Workbench. Online Appendix for "Data Mining: Practical Machine Learning Tools and Techniques" (Fourth Edition). (Morgan Kaufmann, 2016),

  24. J.C. Mauro, Y. Yue, A.J. Ellison, P.K. Gupta, D.C. Allan, Proc. Natl. Acad. Sci. 106 19780 (2009)

    Article  ADS  Google Scholar 

  25. L. Gan, Y. Zhou, J. Xin, High Temp.-High Pressures 46, 417 (2017).

  26. J.K. Russell, D. Giordano, D.B. Dingwell, Am. Miner. 88, 1390 (2003)

    Article  ADS  Google Scholar 

  27. L. Gan, J. Xin, Y. Zhou, ISIJ Int. 57, 1303 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Science Foundation of China (Grant No. 52161001) and Natural Science Foundation of Jiangxi Province, China (Grant No. 20192BAB206020). The author would like to thank Dr. Kenneth Kroenlein, Dr. Junfeng Kang, and Mr. Zhihui Hu for their thoughtful comments on machine learning methods.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Gan.

Ethics declarations

Conflict of interest

The corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, L. Predicting Density and Viscosity for Liquid Metals and Alloys Using Machine Learning. Int J Thermophys 43, 99 (2022). https://doi.org/10.1007/s10765-022-03035-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03035-8

Keywords

Navigation