Skip to main content
Log in

Experimental and COMSOL Multiphysics Modeling of Nanofluids Thermal Conductivity Using 3\(\omega\) Method

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this work tackles experimentally and by COMSOL Multiphysics (C.M) numerical modeling using 3\(\omega\) method, the effects of temperature on thermal conductivity of MWCNT/Glycerol and MWCNT/(50 %Water/50 %Glycerol) nanofluids. The experiments were performed at temperatures ranging from 20 °C to 40 °C employing different base fluids (including Water, Glycerol, Ethylene Glycol, 50 %Water/50 %Glycerol) and nanofluids (MWCNT/Glycerol and MWCNT/(50 %Water/50 %Glycerol)), to extract the influence of MWCNT nano-objects on the thermal conductivity behavior of the base fluids. Our approach is based on the heat transfer process between the fluid sample and sinusoidal heating source using synchronous detection to measure the conductive–convective exchange coefficient. We used COMSOL Multiphysics to design the experimental set-up and to reproduce the results of thermal conductivity of the different nanofluid samples. Then the experimental values of thermal conductivity obtained by 3\(\omega\) method are compared with those reproduced by COMSOL Multiphysics simulation and semi-empirical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. P. Keblinski, J.A. Eastman, D.G. Cahill, Mater. Today 8, 36–44 (2005). https://doi.org/10.1016/S1369-7021(05)70936-6

    Article  Google Scholar 

  2. Y. Wang, J. Zhou, X. Guo, RSC Adv. 5, 74611–74628 (2015). https://doi.org/10.1039/c5ra11957j

    Article  ADS  Google Scholar 

  3. G.W. Huber, S. Iborra, A. Corma, Chem. Rev. 106, 4044–4098 (2006). https://doi.org/10.1021/cr068360d

    Article  Google Scholar 

  4. S.U.S. Choi, American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED 231, 99–105 (1995)

  5. S.K. Das, S.U.S. Choi, H.E. Patel, Heat Transfer Eng. 27, 3–19 (2006). https://doi.org/10.1080/01457630600904593

    Article  ADS  Google Scholar 

  6. O. Mahian, A. Kianifar, S.A. Kalogirou, I. Pop, S. Wongwises, Int. J. Heat Mass Transf. 57, 582–594 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.037

    Article  Google Scholar 

  7. D. Cabaleiro, M.J. Pastoriza-Gallego, C. Gracia-Fernández, M.M. Piñeiro, L. Lugo, Nanoscale Res. Lett. 8, 1–13 (2013). https://doi.org/10.1186/1556-276X-8-286

    Article  Google Scholar 

  8. D. Cabaleiro, L. Colla, F. Agresti, L. Lugo, L. Fedele, Int. J. Heat Mass Transf. 89, 433–443 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.067

    Article  Google Scholar 

  9. M. Shamaeil, M. Firouzi, A. Fakhar, J. Therm. Anal. Calorim. 126, 1455–1462 (2016). https://doi.org/10.1007/s10973-016-5548-x

    Article  Google Scholar 

  10. G. Żyła, J. Fal, P. Estellé, Diam. Relat. Mater. 74, 81–89 (2017). https://doi.org/10.1016/j.diamond.2017.02.008

    Article  ADS  Google Scholar 

  11. S. Zeroual, H. Loulijat, E. Achehal, P. Estellé, A. Hasnaoui, S. Ouaskit, J. Mol. Liq. 268, 490–496 (2018). https://doi.org/10.1016/j.molliq.2018.07.090

    Article  Google Scholar 

  12. S. Zeroual et al., J. Mol. Liq. (2020). https://doi.org/10.1016/j.molliq.2020.113229

    Article  Google Scholar 

  13. L. Qiu et al., Phys. Rep. 843, 1–81 (2020). https://doi.org/10.1016/j.physrep.2019.12.001

    Article  ADS  Google Scholar 

  14. T.T. Loong, H. Salleh, IOP Conf. Series: Mater. Sci. Eng. 226, 121 (2017). https://doi.org/10.1088/1757-899X/226/1/012146

    Article  Google Scholar 

  15. D.G. Cahill, Rev. Sci. Instrum. 61, 802–808 (1990). https://doi.org/10.1063/1.1141498

    Article  ADS  Google Scholar 

  16. S.M. Lee, Rev. Sci. Instrum. (2009). https://doi.org/10.1063/1.3082036

    Article  Google Scholar 

  17. H. Akoh, Y. Tsukasaki. J. Cryst. Growth 45, 495–500 (1978)

    Article  ADS  Google Scholar 

  18. J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thompson, Appl. Phys. Lett. 78, 718–720 (2001). https://doi.org/10.1063/1.1341218

    Article  ADS  Google Scholar 

  19. S. Lee, S. Choi, S. Li, J. Eastman, Heat Transfer 121, 280 (2013)

    Article  Google Scholar 

  20. X.F. Li, D.S. Zhu, X.J. Wang, N. Wang, J.W. Gao, H. Li, Thermochim. Acta 469, 98–103 (2008). https://doi.org/10.1016/j.tca.2008.01.008

    Article  Google Scholar 

  21. A. Moumen et al., J. Clust. Sci. 28, 2817–2832 (2017). https://doi.org/10.1007/s10876-017-1259-0

    Article  Google Scholar 

  22. M. Ider, K. Abderrafi, A. Eddahbi, S. Ouaskit, A. Kassiba, J. Clust. Sci. 28, 1025–1040 (2017). https://doi.org/10.1007/s10876-016-1096-6

    Article  Google Scholar 

  23. M. Ider, K. Abderrafi, A. Eddahbi, S. Ouaskit, A. Kassiba, J. Clust. Sci. 28, 1051–1069 (2017). https://doi.org/10.1007/s10876-016-1080-1

    Article  Google Scholar 

  24. I.K. Moon, Y.H. Jeong, S.I. Kwun, Rev. Sci. Instrum. 67, 29–35 (1996). https://doi.org/10.1063/1.1146545

    Article  ADS  Google Scholar 

  25. F. Chen, J. Shulman, Y. Xue, C.W. Chu, G.S. Nolas, Rev. Sci. Instrum. 75, 4578–4584 (2004). https://doi.org/10.1063/1.1805771

    Article  ADS  Google Scholar 

  26. S.R. Choi, D. Kim, Rev. Sci. Instrum. 79, 064901 (2008). https://doi.org/10.1063/1.2937180

    Article  ADS  Google Scholar 

  27. D.W. Oh, A. Jain, J.K. Eaton, K.E. Goodson, J.S. Lee, Int. J. Heat Fluid Flow 29, 1456–1461 (2008). https://doi.org/10.1016/j.ijheatfluidflow.2008.04.007

    Article  Google Scholar 

  28. W.S. Chung, O. Kwon, J.S. Lee, Y.K. Choi, S. Park, J. Mech. Sci. Technol. 19, 1449–1459 (2005). https://doi.org/10.1007/BF03023904

    Article  Google Scholar 

  29. G. Paul, M. Chopkar, I. Manna, P.K. Das, Renew. Sustain. Energy Rev. 14, 1913–1924 (2010). https://doi.org/10.1016/j.rser.2010.03.017

    Article  Google Scholar 

  30. D. Zhu, X. Li, N. Wang, X. Wang, J. Gao, H. Li, Curr. Appl. Phys. 9, 131–139 (2009). https://doi.org/10.1016/j.cap.2007.12.008

    Article  ADS  Google Scholar 

  31. M. Chirtoc, J.F. Henry, Eur. Phys. J. 153, 343–348 (2008). https://doi.org/10.1140/epjst/e2008-00458-8

    Article  Google Scholar 

  32. R. Heyd et al., Rev. Sci. Instrum. 81, 044901 (2010). https://doi.org/10.1063/1.3374015

    Article  ADS  Google Scholar 

  33. L. Fedele, L. Colla, S. Bobbo, Int. J. Refrig 35, 1359–1366 (2012). https://doi.org/10.1016/j.ijrefrig.2012.03.012

    Article  Google Scholar 

  34. M. Sharifpur, N. Tshimanga, J.P. Meyer, O. Manca, Int. Commun. Heat Mass Transfer 85, 12–22 (2017). https://doi.org/10.1016/j.icheatmasstransfer.2017.04.001

    Article  Google Scholar 

  35. A.S.L.F.P. Incropera, D.P. Dewitt, T.L. Bergman, Fundamentals of Heat and Mass Transfer (Wiley, Chichester, 2007)

    Google Scholar 

  36. H. Zerradi, S. Ouaskit, A. Dezairi, H. Loulijat, S. Mizani, Adv. Powder Technol. 25, 1124–1131 (2014). https://doi.org/10.1016/j.apt.2014.02.020

    Article  Google Scholar 

  37. R. Saidur, K.Y. Leong, H.A. Mohammed, Renew. Sustain. Energy Rev. 15, 1646–1668 (2011). https://doi.org/10.1016/j.rser.2010.11.035

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ezzehouany.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezzehouany, S., Tiferras, S., Drighil, A. et al. Experimental and COMSOL Multiphysics Modeling of Nanofluids Thermal Conductivity Using 3\(\omega\) Method. Int J Thermophys 43, 101 (2022). https://doi.org/10.1007/s10765-022-03033-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03033-w

Keywords

Navigation