Skip to main content
Log in

Simulating Rayleigh Streaming and Heat Transfer in a Standing-Wave Thermoacoustic Engine via a Thermal Lattice Boltzmann Method

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The streaming flow and convective heat transfer in a standing-wave thermoacoustic engine (SWTAE) filled with helium gas were numerically handled. The mathematical model depicting the flow and heat transfer occurring consists of the extended Brinkman–Forchheimer–Darcy equations under Boussinesq approximation and completed by the temperature equation based on local thermal equilibrium assumption. Their numerical resolution was performed using a thermal lattice Boltzmann method (TLBM) with the approximation of Bhatnagar–Gross–Krook (BGK) implemented in an in-house solver. Such an approach is further validated by a previous study available in the literature with good agreement. The phase variation of streaming velocity, the convective heat effect on Rayleigh streaming, and temperature gradient and porosity effects on SWTAE thermal efficiency have been investigated and amply commented on. It turned out that the convection effect on the acoustic velocity is mainly observed on the engine core hot side while it is negligible on the cold side. Likewise, its influence on the Rayleigh streaming is particularly detected at low thermal gradient and that the minimization of the Rayleigh effect improves the thermoacoustic conversion at large thermal gradient. On the other hand, such efficiency is improved with increasing the core porosity. Based on the findings obtained, the TLBM approach adopted seems suitable to predict such flow's behavior. Thereby, the present work opens up a new course to model and characterize the flow and transfer of heat by convection in a SWTAE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

c :

Lattices speed (m·s−1)

c s :

Sound speed (m·s−1)

c i :

Lattice velocity in direction i

C p :

Specific heat capacity at constant pressure (J·kg−1·K−1)

Da :

Darcy number (\(= K/(\varepsilon H^{2} )\))

d p :

Mean pore diameter \((m)\)

\(\overline{\overline{d}} ,\;\overline{\overline{D}}\) :

Strain-rate tensors

\({E}_{c}\) :

Eckert number (\(= U_{ref}^{2} /(C_{f} .\Delta T_{ref} )\))

\(f_{i}\), \(g_{i}\) :

Distribution functions in direction \(i\)

\(f_{i}^{eq}\), \(g_{i}^{eq}\) :

Equilibrium distribution functions

\({F}_{\varepsilon }\) :

Forchheimer form coefficient

F :

Total body force (N·kg−1)

\(g\) :

Gravity acceleration (m·s−2)

G :

Buoyancy force

H, L :

Characteristic height and length (m)

K :

Porous medium permeability (m2)

k :

Thermal conductivity (W·m−1·K−1)

P :

Pressure (Pa)

p :

Dimensionless pressure

Pr :

Prandtl number (\(= \mu C_{p,f} /k_{f}\))

r :

Reflection coefficient

Ra :

Rayleigh number (\(= g\beta (T_{H} - T_{C} )H^{3} /(\nu \alpha )\))

Rc, R K :

Ratios of heat capacities and thermal conductivities

Re :

Reynolds number (\({\text{Re}} = U_{ref} H/\nu\))

t, t ̃ :

Time (s) and dimensionless time

T:

Temperature (K)

\(\overrightarrow {U} \left( {U,V} \right)\) :

Velocity (m·s−1)

\(\overrightarrow {u} \left( {u,v} \right)\) :

Dimensionless velocity

\(X,\;Y\) :

Cartesian coordinates (m)

\(x,\;y\) :

Dimensionless coordinates

\(Q,\;W\) :

Heat power (W), acoustic power (W)

\(\alpha\) :

Thermal diffusivity

\(\beta\) :

Thermal expansion coefficient (K−1)

\(\varepsilon\) :

Porosity

\(\eta\) :

Thermal efficiency (%)

\(\mu\) :

Dynamic viscosity (Pa·s)

\(\nu\) :

Kinematic viscosity (\(m^{2} \cdot s^{ - 1}\))

\(\Phi\) :

Viscous dissipation

ϕ :

Dimensionless viscous dissipation

\(\vartheta\) :

Binary number

\(\psi\) :

Acoustic wave's phase

\(\rho \) :

Density (kg·m−3)

\(\theta \) :

Dimensionless temperature

\(g\) :

Gravity acceleration (m·s2)

\(\nabla (..)\) :

Gradient operator

\(\nabla .(..)\) :

Divergence operator

\(\nabla^{2} (..)\) :

Laplacian operator

\(\Delta (..)\) :

Difference operator

a, C, H :

Ambient, cold, hot

\(e,f, s\) :

Effective, fluid, solid

I :

Initial state

p :

Porous medium

ref :

Reference

BCs:

Boundary conditions

BGK:

Bhatnagar–Gross–Krook

BFD:

Brinkman–Forchheimer–Darcy

CFD:

Computational fluid dynamics

LBE:

Lattice Boltzmann equation

LBM:

Lattice Boltzmann method

LTE:

Local thermal equilibrium

SWTAE:

Standing-wave thermoacoustic engine

References

  1. T. Jin, R. Yang, Y. Wang, Y. Liu, Y. Feng, Phase adjustment analysis and performance of a looped thermoacoustic prime mover with compliance/resistance tube. Appl. Energy 183, 290–298 (2016). https://doi.org/10.1016/j.apenergy.2016.08.182

    Article  Google Scholar 

  2. J. Xu, J. Hu, E. Luo, L. Zhang, W. Dai, A cascade-looped thermoacoustic driven cryocooler with different-diameter resonance tubes. Part I: Theoretical analysis of thermodynamic performance and characteristics. Energy 181, 943–953 (2019). https://doi.org/10.1016/j.energy.2019.06.009

    Article  Google Scholar 

  3. J. Xu, J. Hu, Y. Sun, H. Wang, Z. Wu, J. Hu, E. Luo, A cascade-looped thermoacoustic driven cryocooler with different-diameter resonance tubes. Part II: Experimental study and comparison. Energy 207, 118232 (2020). https://doi.org/10.1016/j.energy.2020.18232

    Article  Google Scholar 

  4. J. Tan, J. Wei, T. Jin, Electrical-analogy network model of a modified two-phase thermofluidic oscillator with regenerator for low-grade heat recovery. Appl. Energy 262, 114539 (2020). https://doi.org/10.1016/j.apenergy.2020.114539

    Article  Google Scholar 

  5. J. Xu, E. Luo, S. Hochgreb, Study on a heat-driven thermoacoustic refrigerator for low-grade heat recovery. Appl. Energy 271, 115167 (2020). https://doi.org/10.1016/j.apenergy.2020.115167

    Article  Google Scholar 

  6. C. Shen, Y. He, Y. Li, H. Ke, D. Zhang, Y. Liu, Performance of solar powered thermoacoustic engine at different tilted angles. Appl. Therm. Eng. 29, 2745–2756 (2009). https://doi.org/10.1016/j.applthermaleng.2009.01.008

    Article  Google Scholar 

  7. D. Zhao, S. Li, W. Yang, Z. Zhang, Numerical investigation of the effect of distributed heat sources on heat-to-sound conversion in a T-shaped thermoacoustic system. Appl. Energy 144, 204–213 (2015). https://doi.org/10.1016/j.apenergy.2015.01.091

    Article  ADS  Google Scholar 

  8. A. Kruse, A. Ruziewicz, A. Nemś, M. Tajmar, Numerical analysis of competing methods for acoustic field adjustment in a looped-tube thermoacoustic engine with a single stage. Energy Convers. Manage. 181, 26–35 (2019). https://doi.org/10.1016/j.enconman.2018.11.070

    Article  Google Scholar 

  9. S. Zhang, Z.H. Wu, R.D. Zhao, G.Y. Yu, W. Dai, E.C. Luo, Study on a basic unit of a double-acting thermoacoustic heat engine used for dish solar power. Energy Convers. Manage. 85, 718–726 (2014). https://doi.org/10.1016/j.enconman.2014.02.065

    Article  Google Scholar 

  10. K. Tsuda, Y. Ueda, Critical temperature of traveling-and standing-wave thermoacoustic engines using a wet regenerator. Appl. Energy 196, 62–67 (2017). https://doi.org/10.1016/j.apenergy.2017.04.004

    Article  Google Scholar 

  11. K. Tang, T. Lei, T. Jin, X.G. Lin, Z.Z. Xu, A standing-wave thermoacoustic engine with gas-liquid coupling oscillation. Appl. Phys. Lett. 94, 254101 (2009). https://doi.org/10.1063/1.3157920

    Article  ADS  Google Scholar 

  12. R. Raspet, W.V. Slaton, C.J. Hickey, R.A. Hiller, Theory of inert gas-condensing vapor thermoacoustics: propagation equation. J. Acoust. Soc. Am. 112, 1414–1422 (2002). https://doi.org/10.1121/1.1508113

    Article  ADS  Google Scholar 

  13. K. Tang, Z.J. Huang, T. Jin, G.B. Chen, Influence of acoustic pressure amplifier dimensions on the performance of a standing-wave thermoacoustic system. Appl. Therm. Eng. 29, 950–956 (2009). https://doi.org/10.1016/j.applthermaleng.2008.05.001

    Article  Google Scholar 

  14. R. Bao, G. Chen, K. Tang, Z. Jia, W. Cao, Influence of resonance tube geometry shape on performance of thermoacoustic engine. Ultrasonics 44, 1519–1521 (2006). https://doi.org/10.1016/j.ultras.2006.08.005

    Article  Google Scholar 

  15. R. Yang, Y. Wang, T. Jin, Y. Feng, K. Tang, Performance optimization of the regenerator of a looped thermoacoustic engine powered by low-grade heat. Int. J. Energy Res. 42, 4470–4480 (2018). https://doi.org/10.1002/er.4192

    Article  Google Scholar 

  16. K. Nakamura, Y. Ueda, Design and construction of a standing-wave thermoacoustic engine with heat sources having a given temperature ratio. J. Therm. Sci. Technol. 6, 416–423 (2011). https://doi.org/10.1299/jtst.6.416

    Article  Google Scholar 

  17. G. Chen, L. Tang, B.R. Mace, Theoretical and experimental investigation of the dynamic behavior of a standing-wave thermoacoustic engine with various boundary conditions. Int. J. Heat Mass Transf. 123, 367–381 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.121

    Article  Google Scholar 

  18. M.E.H. Tijani, S. Spoelstra, A high performance thermoacoustic engine. J. Appl. Phys. 110, 093519 (2011). https://doi.org/10.1063/1.3658872

    Article  ADS  Google Scholar 

  19. I.A. Ramadan, H. Bailliet, J.C. Valière, Experimental investigation of the influence of natural convection and end-effects on Rayleigh streaming in a thermoacoustic engine. J. Acoust. Soc. Am. 143, 361–372 (2018). https://doi.org/10.1121/1.5021331

    Article  ADS  Google Scholar 

  20. S. Jung, K.I. Matveev, Study of a small-scale standing-wave thermoacoustic engine. Proc. Inst Mech. Eng. Part C 224, 133–141 (2010). https://doi.org/10.1243/09544062JMES1594

    Article  Google Scholar 

  21. E.M. Sharify, S. Hasegawa, Traveling-wave thermoacoustic refrigerator driven by a multistage traveling-wave thermoacoustic engine. Appl. Therm. Eng. 113, 791–795 (2017). https://doi.org/10.1016/j.applthermaleng.2016.11.021

    Article  Google Scholar 

  22. M.E.H. Tijani, Loudspeaker-Driven Thermo-Acoustic Refrigeration (Technische Universiteit Eindhoven, Eindhoven, 2001). https://doi.org/10.6100/IR547542

    Book  Google Scholar 

  23. S.H. Tasnim, R.A. Fraser, Modeling and analysis of flow, thermal, and energy fields within stacks of thermoacoustic engines filled with porous media: a conjugate problem. J. Therm. Sci. Eng. Appl. 1, 041006 (2009). https://doi.org/10.1115/1.4001747

    Article  Google Scholar 

  24. S. Karpov, A. Prosperetti, A nonlinear model of thermoacoustic devices. J. Acoust. Soc. Am. 112, 1431–1444 (2002). https://doi.org/10.1121/1.1501277

    Article  ADS  Google Scholar 

  25. M.F. Hamilton, Y.A. Ilinskii, E.A. Zabolotskaya, Nonlinear two-dimensional model for thermoacoustic engines. J. Acoust. Soc. Am. 111, 2076–2086 (2002). https://doi.org/10.1121/1.1467675

    Article  ADS  Google Scholar 

  26. D.M. Sun, K. Wang, L.M. Qiu, B.H. Lai, Y.F. Li, X.B. Zhang, Theoretical and experimental investigation of onset characteristics of standing-wave thermoacoustic engines based on thermodynamic analysis. Appl. Acoust. 81, 50–57 (2014). https://doi.org/10.1016/j.apacoust.2014.02.002

    Article  Google Scholar 

  27. G. Penelet, M. Guedra, V. Gusev, T. Devaux, Simplified account of Rayleigh streaming for the description of nonlinear processes leading to steady state sound in thermoacoustic engines. Int. J. Heat Mass Transf. 55, 6042–6053 (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.015

    Article  Google Scholar 

  28. G. Yu, W. Dai, E. Luo, CFD simulation of a 300 Hz thermoacoustic standing wave engine. Cryogenics 50, 615–622 (2012). https://doi.org/10.1016/j.cryogenics.2010.02.011

    Article  ADS  Google Scholar 

  29. O. Hireche, C. Weisman, D. Baltean-Carlès, V. Daru, Y. Fraigneau, Numerical study of the effects of natural convection in a thermoacoustic configuration-natural convection in thermoacoustics. Mech. Ind. 20, 807 (2019). https://doi.org/10.1051/meca/2020051

    Article  Google Scholar 

  30. V. Daru, I. Reyt, H. Bailliet, C. Weisman, D. Baltean-Carles, Acoustic and streaming velocity components in a resonant waveguide at high acoustic levels. J. Acoust. Soc. Am. 141, 563–574 (2017). https://doi.org/10.1121/1.4974058

    Article  MATH  ADS  Google Scholar 

  31. V. Daru, D. Baltean-Carlès, C. Weisman, H. Bailliet, I. Reyt, Acoustic Rayleigh streaming: comprehensive analysis of source terms and their evolution with acoustic level. J. Acoust. Soc. Am. 142, 2608–2608 (2017). https://doi.org/10.1121/1.5014546

    Article  MATH  ADS  Google Scholar 

  32. R. Rahpeima, R. Ebrahimi, Numerical investigation of the effect of stack geometrical parameters and thermo-physical properties on performance of a standing wave thermoacoustic refrigerator. Appl. Therm. Eng. 149, 1203–1214 (2019). https://doi.org/10.1016/j.applthermaleng.2018.12.093

    Article  Google Scholar 

  33. K. Wang, D.M. Sun, J. Zhang, J. Zou, K. Wu, L.M. Qiu, Z.Y. Huang, Numerical simulation on onset characteristics of traveling-wave thermoacoustic engines based on a time-domain network model. Int. J. Therm. Sci. 94, 61–71 (2015). https://doi.org/10.1016/j.ijthermalsci.2015.02.010

    Article  Google Scholar 

  34. Y. Wang, Y. He, J. Huang, Q. Li, Implicit-explicit finite-difference lattice Boltzmann method with viscid compressible model for gas oscillating patterns in a resonator. Int. J. Numer. Methods Fluids 59, 853–872 (2009). https://doi.org/10.1002/fld.1843

    Article  MathSciNet  MATH  ADS  Google Scholar 

  35. Y. Wang, D.K. Sun, Y.L. He, W.Q. Tao, Lattice Boltzmann study on thermoacoustic onset in a Rijke tube. Eur. Phys. J. Plus 130, 1–10 (2015). https://doi.org/10.1140/epjp/i2015-15009-5

    Article  Google Scholar 

  36. F. Shan, X. Guo, J. Tu, J. Cheng, D. Zhang, Multi-relaxation-time lattice Boltzmann modeling of the acoustic field generated by focused transducer. Int. J. Mod. Phys. C 28, 1750038 (2017). https://doi.org/10.1142/S0129183117500383

    Article  ADS  Google Scholar 

  37. Y. Wang, Y.L. He, Q. Li, G.H. Tang, Numerical simulations of gas resonant oscillations in a closed tube using lattice Boltzmann method. Int. J. Heat Mass Transf. 51, 3082–3090 (2008). https://doi.org/10.1016/j.ijheatmasstransfer.2007.08.029

    Article  MATH  Google Scholar 

  38. C. Ji, D. Zhao, Lattice Boltzmann investigation of acoustic damping mechanism and performance of an in-duct circular orifice. J. Acoust. Soc. Am. 135, 3243–3251 (2014). https://doi.org/10.1121/1.4876376

    Article  ADS  Google Scholar 

  39. E.M. Salomons, W.J.A. Lohman, H. Zhou, Simulation of sound waves using the lattice Boltzmann method for fluid flow: Benchmark cases for outdoor sound propagation. PLoS ONE 11, e0147206 (2016). https://doi.org/10.1371/journal.pone.0147206

    Article  Google Scholar 

  40. A. Berson, M. Michard, P. Blanc-Benon, Measurement of acoustic velocity in the stack of a thermoacoustic refrigerator using particle image velocimetry. Heat Mass Transf. 44, 1015–1023 (2008). https://doi.org/10.1007/s00231-007-0316-x

    Article  ADS  Google Scholar 

  41. R. Yang, Y. Wang, J. Tan, J. Luo, T. Jin, Numerical and experimental study of a looped travelling-wave thermoacoustic electric generator for low-grade heat recovery. Int. J. Energy Res. 43, 5735–5746 (2019). https://doi.org/10.1002/er.4670

    Article  Google Scholar 

  42. O. Miled, H. Dhahri, A. Mhimid, Numerical investigation of porous stack for a solar-powered thermoacoustic refrigerator. Adv. Mech. Eng. 12, 1–14 (2020). https://doi.org/10.1177/1687814020930843

    Article  Google Scholar 

  43. T. Biwa, Y. Tashiro, M. Ishigaki, Y. Ueda, T. Yazak, Measurements of acoustic streaming in a looped-tube thermoacoustic engine with a jet pump. J. Appl. Phys. (2007). https://doi.org/10.1063/1.2713360

    Article  Google Scholar 

  44. Z. Guo, T.S. Zhao, Lattice Boltzmann model for incompressible flows through porous media. Phys. Rev. E 66, 036304 (2002). https://doi.org/10.1103/PhysRevE.66.036304

    Article  ADS  Google Scholar 

  45. B. Amami, H. Dhahri, A. Mhimid, Viscous dissipation effects on heat transfer, energy storage, and entropy generation for fluid flow in a porous channel submitted to a uniform magnetic field. J. Porous Media 17, 841–859 (2014). https://doi.org/10.1615/JPorMedia.v17.i10.10

    Article  Google Scholar 

  46. Q. Liu, Y.L. He, Lattice Boltzmann simulations of convection heat transfer in porous media. Phys. A: Stat. Mech. Appl. 465, 742–753 (2017). https://doi.org/10.1016/j.physa.2016.08.010

    Article  MathSciNet  MATH  Google Scholar 

  47. J. Wang, M. Wang, Z.A. Li, Lattice Boltzmann algorithm for fluid–solid conjugate heat transfer. Int. J. Therm. Sci. 46, 228–234 (2007). https://doi.org/10.1016/j.ijthermalsci.2006.04.012

    Article  Google Scholar 

  48. M. Jourabian, A.A.R. Darzi, D. Toghraie, O. Ali Akbari, Melting process in porous media around two hot cylinders: Numerical study using the lattice Boltzmann method. Phys. A: Stat. Mech. Appl. 509, 316–335 (2018). https://doi.org/10.1016/j.physa.2018.06.011

    Article  Google Scholar 

  49. D. Gao, Z. Chen, Lattice Boltzmann simulation of natural convection dominated melting in a rectangular cavity filled with porous media. Int. J. Therm. Sci. 50, 493–501 (2011). https://doi.org/10.1016/j.ijthermalsci.2010.11.010

    Article  Google Scholar 

  50. H. Shokouhmand, F. Jam, M.R. Salimpour, Simulation of laminar flow and convective heat transfer in conduits filled with porous media using Lattice Boltzmann Method. Int. Commun. Heat Mass Transf. 36, 378–384 (2009). https://doi.org/10.1016/j.icheatmasstransfer.2008.11.016

    Article  Google Scholar 

  51. G. Tang, W. Tao, Y. He, Lattice Boltzmann method for simulating gas flow in microchannels. Int. J. Mod. Phys. C 15, 335–347 (2004). https://doi.org/10.1142/S0129183104005747

    Article  MATH  ADS  Google Scholar 

  52. E.K. Ahangar, M.B. Ayani, J.A. Esfahani, Simulation of rarefied gas flow in a microchannel with backward facing step by two relaxation times using lattice Boltzmann method slip and transient flow regimes. Int. J. Mech. Sci. 157, 802–815 (2019). https://doi.org/10.1016/j.ijmecsci.2019.05.025

    Article  Google Scholar 

  53. K. Kuzuu, S. Hasegawa, Effect of non-linear flow behavior on heat transfer in a thermoacoustic engine core. Int. J. Heat Mass Transf. 108, 1591–1601 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.064

    Article  Google Scholar 

Download references

Acknowledgements

The first author would like to thank Dr. Riheb Mabrouk (LESTE/ENIM) for the many fruitful discussions and helpful comments when revising the manuscript. Likewise, the authors would like to thank the anonymous reviewers for their thoughtful comments and worthwhile suggestions that have helped to further improve this paper.

Author information

Authors and Affiliations

Authors

Contributions

This work has been conducted fairly by all authors (research design, software, investigation, original draft writing, outcomes analysis and discussion, validation, writing review & editing, reaching the conclusion). Likewise, they have read and approved the current manuscript version to be published.

Corresponding author

Correspondence to Hassane Naji.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interest (competing financial or personal relationships) concerning this research, the authorship, and/or the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slimene, S., Yahya, A., Dhahri, H. et al. Simulating Rayleigh Streaming and Heat Transfer in a Standing-Wave Thermoacoustic Engine via a Thermal Lattice Boltzmann Method. Int J Thermophys 43, 100 (2022). https://doi.org/10.1007/s10765-022-03016-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03016-x

Keywords

Navigation