Skip to main content

Advertisement

Log in

An International Standard Formulation for 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf) Covering Temperatures from the Triple Point Temperature to 410 K and Pressures Up to 100 MPa

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A new fundamental equation of state is presented for 2,3,3,3-tetrafluoroprop-1-ene (R1234yf). The equation is valid from the triple point temperature (121.6 K) to 410 K at pressures up to 100 MPa, where typical expanded uncertainties (k = 2) in calculated properties from the equation are 0.1 % for vapor pressures at temperatures above 270 K and 0.3 % at lower temperatures, 0.1 % for liquid densities at pressures below 40 MPa and 0.25 % at higher pressures, 0.2 % for vapor densities, 0.02 % for vapor phase sound speeds, 0.05 % for liquid phase sound speeds, 1 % for vapor phase isobaric heat capacities, 2 % for liquid phase isobaric heat capacities, and 2 % for liquid phase isochoric heat capacities. At very low temperatures around 200 K, uncertainties for vapor pressures may be larger than 0.5 %. Various plots of constant-property lines demonstrate that not only does the equation exhibit correct behavior over all temperatures and pressures within the range of validity, but also that it shows reasonable extrapolation behavior at extremely low and high temperatures, and at high pressures and densities. The equation of state is the best currently available property representation for R1234yf, and has been adopted as an international standard by the ISO working group, which recently revised ISO/DIS 17584 (Refrigerant properties).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. G. Myhre, D. Shindell, F.M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura, H. Zhang, Anthropogenic and Natural Radiative Forcing. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, 2013)

  2. O. Nielsen, M. Javadi, M. Sulbaek Andersen, M. Hurley, T. Wallington, R. Singh, Chem. Phys. Lett. 439, 18 (2007). https://doi.org/10.1016/j.cplett.2007.03.053

    Article  ADS  Google Scholar 

  3. ANSI/ASHRAE Standard 34-2019; Designation and Safety Classification of Refrigerants (2019)

  4. M. Richter, M.O. McLinden, E.W. Lemmon, J. Chem. Eng. Data 56, 3254 (2011). https://doi.org/10.1021/je200369m

    Article  Google Scholar 

  5. R. Akasaka, Int. J. Thermophys. 32, 1125 (2011). https://doi.org/10.1007/s10765-011-0992-0

    Article  ADS  Google Scholar 

  6. International Organization for Standardization, ISO/DIS 17584 Refrigerant Properties (2022)

  7. K. Tanaka, Y. Higashi, Int. J. Refrig. 33, 474 (2010). https://doi.org/10.1016/j.ijrefrig.2009.10.003

    Article  Google Scholar 

  8. G. Di Nicola, C. Brandoni, C. Di Nicola, G. Giuliani, J. Therm. Anal. Calorim. 108, 627 (2012). https://doi.org/10.1007/s10973-011-1944-4

    Article  Google Scholar 

  9. S. Tomassetti, G. Di Nicola, C. Kondou, Int. J. Refrig. 133, 172 (2022). https://doi.org/10.1016/j.ijrefrig.2016.02.003

    Article  Google Scholar 

  10. E.W. Lemmon, A.R.H. Goodwin, J. Phys. Chem. Ref. Data 29, 1 (2000). https://doi.org/10.1063/1.556054

    Article  ADS  Google Scholar 

  11. K. Gao, J. Wu, P. Zhang, E.W. Lemmon, J. Chem. Eng. Data 61, 2859 (2016). https://doi.org/10.1021/acs.jced.6b00195

    Article  Google Scholar 

  12. CODATA. CODATA Internationally Recommended 2018 Values of the Fundamental Physical Constants (2020). https://physics.nist.gov/cuu/Constants/. Accessed 26 Oct 2020

  13. R. Span, Multiparameter Equations of State: An Accurate Source of Thermodynamic Property Data (Springer, Berlin, 2000)

    Book  Google Scholar 

  14. E.W. Lemmon, R.T. Jacobsen, J. Phys. Chem. Ref. Data 34, 69 (2005). https://doi.org/10.1063/1.1797813

    Article  ADS  Google Scholar 

  15. H.J. Kretzschmar, T. Zschunke, J. Klinger, A.I. Dittman, An Alternative Method for the Numerical Calculation of the Maxwell Criterion in Vapour Pressure Computations, Properties of Water And Steam: Proceedings of The 11th International Conference (CRC Press, 1990)

  16. R. Akasaka, J. Therm. Sci. Technol. 3, 442 (2008). https://doi.org/10.1299/jtst.3.442

    Article  Google Scholar 

  17. Y. Kano, Y. Kayukawa, K. Fujii, H. Sato, Int. J. Thermophys. 31, 2051 (2010). https://doi.org/10.1007/s10765-010-0885-7

    Article  ADS  Google Scholar 

  18. D.A. McQuarrie, Statistical Mechanics, CHAPTER 8 (Harper & Row, 1975)

  19. R. Hulse, R. Singh, H. Pham, in Proc. 3rd IIR Conf. Thermophys. Prop. Transf. Process. Refrig. (Boulder, 2009)

  20. E.W. Lemmon, M.O. McLinden, W. Wagner, J. Chem. Eng. Data 54, 3141 (2009). https://doi.org/10.1063/1.556054

    Article  Google Scholar 

  21. M. Thol, E.W. Lemmon, R. Span, High Temp.-High Press. 41, 81 (2012)

    Google Scholar 

  22. R. Akasaka, Y. Zhou, E.W. Lemmon, J. Phys. Chem. Ref. Data 44, 013104 (2015). https://doi.org/10.1063/1.4913493

    Article  ADS  Google Scholar 

  23. S. Herrig, M. Thol, A.H. Harvey, E.W. Lemmon, J. Phys. Chem. Ref. Data 47, 043102 (2018). https://doi.org/10.1063/1.5053993

    Article  ADS  Google Scholar 

  24. R. Akasaka, E.W. Lemmon, J. Chem. Eng. Data 64, 4679 (2019). https://doi.org/10.1021/acs.jced.9b00007

    Article  Google Scholar 

  25. R. Akasaka, Y. Higashi, N. Sakoda, S. Fukuda, E.W. Lemmon, Int. J. Refrig. 119, 457 (2020). https://doi.org/10.1016/j.ijrefrig.2020.07.011

    Article  Google Scholar 

  26. R. Akasaka, E.W. Lemmon, in 2nd IIR Conference on HFOs and Low GWP Blends (Osaka, Japan, 2021)

  27. Y. Kano, Y. Kayukawa, K. Fujii, in Proc. 19th Symp. Environ. Eng. (Naha, Japan, 2009)

  28. G. Di Nicola, F. Polonara, G. Santori, J. Chem. Eng. Data 55, 201 (2010). https://doi.org/10.1021/je900306v

    Article  Google Scholar 

  29. L. Fedele, S. Bobbo, F. Groppo, J.S. Brown, C. Zilio, J. Chem. Eng. Data 56, 2608 (2011). https://doi.org/10.1021/je2000952

    Article  Google Scholar 

  30. P. Hu, L.X. Chen, Z.S. Chen, Fluid Phase Equilib. 360, 293 (2013). https://doi.org/10.1016/j.fluid.2013.09.056

    Article  Google Scholar 

  31. T. Kamiaka, C. Dang, E. Hihara, Int. J. Refrig. 36, 965 (2013). https://doi.org/10.1016/j.ijrefrig.2012.08.016

    Article  Google Scholar 

  32. L.X. Chen, P. Hu, W.B. Zhu, L. Jia, Z.S. Chen, Fluid Phase Equilib. 392, 19 (2015). https://doi.org/10.1016/j.fluid.2015.02.014

    Article  Google Scholar 

  33. H. Madani, A. Valtz, F. Zhang, J. El Abbadi, C. Houriez, P. Paricaud, C. Coquelet, Fluid Phase Equilib. 415, 158 (2016). https://doi.org/10.1016/j.fluid.2016.02.005

    Article  Google Scholar 

  34. Z.Q. Yang, L.G. Kou, S. Han, C. Li, Z.J. Hao, W. Mao, W. Zhang, J. Lu, Fluid Phase Equilib. 427, 390 (2016). https://doi.org/10.1016/j.fluid.2016.07.031

    Article  Google Scholar 

  35. T. Kochenburger, D. Gomse, I. Tratschitt, A. Zimmermann, S. Grohmann, Fluid Phase Equilib. 450, 13 (2017). https://doi.org/10.1016/j.fluid.2017.07.002

    Article  Google Scholar 

  36. P. Hu, N. Zhang, L.X. Chen, X.D. Cai, J. Chem. Eng. Data 63, 1507 (2018). https://doi.org/10.1021/acs.jced.7b01073

    Article  Google Scholar 

  37. A. Valtz, J.E. Abbadi, C. Coquelet, C. Houriez, Int. J. Refrig. 107, 315 (2019). https://doi.org/10.1016/j.ijrefrig.2019.07.024

    Article  Google Scholar 

  38. J. Yin, G. Zhao, S. Ma, Int. J. Refrig. 107, 183 (2019). https://doi.org/10.1016/j.ijrefrig.2019.08.008

    Article  Google Scholar 

  39. M. Yoshitake, S. Matsuo, T. Sotani, in Proc. 30th Japan Symp. Thermophys. Prop. (Yonezawa, Japan, 2009), pp. 353–355 (in Japanese)

  40. C. Di Nicola, G. Di Nicola, M. Pacetti, F. Polonara, G. Santori, J. Chem. Eng. Data 55, 3302 (2010). https://doi.org/10.1021/je100102q

    Article  Google Scholar 

  41. K. Tanaka, Y. Higashi, R. Akasaka, J. Chem. Eng. Data 55, 901 (2010). https://doi.org/10.1021/je900515a

    Article  Google Scholar 

  42. K. Tanaka, Y. Higashi, Trans. Japan Soc. Refrig. Air Cond. Eng. 28, 51 (2011). https://doi.org/10.11322/tjsrae.28.51

    Article  Google Scholar 

  43. L. Fedele, J.S. Brown, L. Colla, A. Ferron, S. Bobbo, C. Zilio, J. Chem. Eng. Data 57, 482 (2012). https://doi.org/10.1021/je201030g

    Article  Google Scholar 

  44. J. Klomfar, M. Součková, J. Pátek, J. Chem. Eng. Data 57, 3283 (2012). https://doi.org/10.1021/je3009304

    Article  Google Scholar 

  45. G. Qiu, X. Meng, J. Wu, J. Chem. Thermodyn. 60, 150 (2013). https://doi.org/10.1016/j.jct.2013.01.006

    Article  Google Scholar 

  46. P. Hu, X.D. Cai, L.X. Chen, H. Xu, G. Zhao, J. Chem. Eng. Data 62, 3353 (2017). https://doi.org/10.1021/acs.jced.7b00427

    Article  Google Scholar 

  47. N. Gao, Y. Jiang, J. Wu, Y. He, G. Chen, Fluid Phase Equilib. 376, 64 (2014). https://doi.org/10.1016/j.fluid.2014.05.029

    Article  Google Scholar 

  48. Y. Liu, X. Zhao, S. Lv, H. He, J. Chem. Eng. Data 62, 1119 (2017). https://doi.org/10.1021/acs.jced.6b00959

    Article  Google Scholar 

  49. M.Z. Lukawski, M.P. Ishmael, J.W. Tester, J. Chem. Eng. Data 63, 463 (2018). https://doi.org/10.1021/acs.jced.7b00946

    Article  Google Scholar 

  50. N. Kagawa, A. Matsuguchi, J. Chem. Eng. Data 65, 4299 (2020). https://doi.org/10.1021/acs.jced.0c00243

    Article  Google Scholar 

  51. B. Sheng, Y. Zhao, X. Dong, H. Guo, M. Gong, J. Chem. Thermodyn. 164, 106626 (2022). https://doi.org/10.1016/j.jct.2021.106626

    Article  Google Scholar 

  52. Q. Zhong, X. Dong, Y. Zhao, J. Wang, H. Zhang, H. Li, H. Guo, J. Shen, M. Gong, J. Chem. Thermodyn. 125, 86 (2018). https://doi.org/10.1016/j.jct.2018.05.022

    Article  Google Scholar 

  53. S. Lago, P.A. Giuliano Albo, S. Brignolo, J. Chem. Eng. Data 56, 161 (2011). https://doi.org/10.1021/je100896n

    Article  Google Scholar 

  54. M.O. McLinden, R.A. Perkins, J. Chem. Thermodyn. (2022)

  55. M. Thol, G. Rutkai, A. Köster, R. Lustig, R. Span, J. Vrabec, J. Phys. Chem. Ref. Data (2016). https://doi.org/10.1063/1.4945000

    Article  Google Scholar 

  56. G. Venkatarathnam, L.R. Oellrich, Fluid Phase Equilib. 301, 225 (2011). https://doi.org/10.1016/j.fluid.2010.12.001

    Article  Google Scholar 

  57. E.W. Lemmon, I.H. Bell, M.L. Huber, M.O. McLinden. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, National Institute of Standards and Technology (2018). https://www.nist.gov/srd/refprop

  58. R. Span, R. Beckmüller, S. Hielscher, A. Jäger, E. Mickoleit, T. Neumann, S. Pohl, B. Semrau, M. Thol. TREND. Thermodynamic Reference and Engineering Data 5.0. Lehrstuhl für Thermodynamik, Ruhr-Universität Bochum (2020)

  59. I.H. Bell, J. Wronski, S. Quoilin, V. Lemort, Ind. Eng. Chem. Res. 53, 2498 (2014). https://doi.org/10.1021/ie4033999

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the members of ISO/TC 86/SC 8/WG 7 for their valuable feedback. The authors appreciate Mark O. McLinden, National Institute of Standards and Technology, Boulder, for his assistance during the documentation of this paper, and Ian H. Bell, National Institute of Standards and Technology, Boulder, for his generous support in programming the supplementary computer codes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Akasaka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (ZIP 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemmon, E.W., Akasaka, R. An International Standard Formulation for 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf) Covering Temperatures from the Triple Point Temperature to 410 K and Pressures Up to 100 MPa. Int J Thermophys 43, 119 (2022). https://doi.org/10.1007/s10765-022-03015-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03015-y

Keywords

Navigation