Skip to main content

Single and Multi-phase Change Materials Used in Cooling Systems

Abstract

The use of refrigerators and air conditioners has been increasing in domestic and commercial buildings constantly over the last century, resulting in a significant increase in energy demand. Thermal energy storage (TES) system may be able to reduce energy and temperature fluctuations and enhance the overall need or the performance of cooling systems. Application of phase change materials (PCMs) in TES systems can be beneficial for balancing supply and demand in energy, minimizing and shifting the peak cooling loads, reducing the temperature fluctuations. This article presents an overview of TES systems incorporating PCMs for air conditioning, refrigerators, and freezers. Literature shows different ways to incorporate PCMs in air conditioning systems. PCM use in compartments and evaporators and PCM as a heat storage medium in condensers prevail in the present review. Organic-based PCMs are the most widely used materials in air conditioning systems. Then, this study compares the applications of single and multi-PCMs in cooling systems. The results showed that, compared to a single PCM configuration, multi-PCM configurations improved heat transfer rates, reduced the gap between peak and off-peak loads of electricity demand, and shifted electricity consumption from peak to off-peak times. In conclusion, this study indicates that the potential for using PCM in refrigerators and air conditioners still requires further investigation on improving the PCMs properties and the PCM container materials and developing analytical methods for accurately predicting the PCM behavior.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

PCM:

Phase change material

m-PCMs:

Multi-phase change materials

MEPCM:

Microencapsulated PCM

COP:

Coefficient of performance

LHS:

Latent heat storage

HTF:

Heat transfer fluid

LHTES:

Latent heat thermal energy storage

TES:

Thermal energy storage

DSC:

Differential scanning calorimeter

CFD:

Computational fluid dynamics

CTES:

Cold thermal energy storage

SSPCM:

Shape stabilized phase change material

HCE-SSPCM:

Heat conduction enhanced shape-stabilized phase change material

RSM:

Response surface methodology

DOE:

Design of experiments

PEG:

Polyethylene glycol

CPCM:

Composite PCM

References

  1. A. Streltsov, J.M. Malof, B. Huang, K. Bradbury. (2020). https://doi.org/10.1016/J.APENERGY.2020.116018

    Article  Google Scholar 

  2. U. Berardi. (2017) doi:https://doi.org/10.1016/J.RESCONREC.2016.03.014.

  3. M. Jafaripour, S.M. Sadrameli, H. Pahlavanzadeh, S. A. H. S. Mousavi. (2021). https://doi.org/10.1016/J.EST.2020.102155

    Article  Google Scholar 

  4. H. Zhang, J. Baeyens, G. Cáceres, J. Degrève, Y. Lv. (2016). https://doi.org/10.1016/J.PECS.2015.10.003

    Article  Google Scholar 

  5. M.M.A. Khan, R. Saidur, F. A. Al-Sulaiman. (2017). https://doi.org/10.1016/J.RSER.2017.03.070

    Article  Google Scholar 

  6. B.P. Jelle, S. E. Kalnæs. (2017). https://doi.org/10.1016/B978-0-08-101128-7.00003-4

    Article  Google Scholar 

  7. C. Amaral, R. Vicente, P.A.A.P. Marques, A. Barros-Timmons. (2017). https://doi.org/10.1016/j.rser.2017.05.093

    Article  Google Scholar 

  8. E. Douvi, C. Pagkalos, G. Dogkas, M.K. Koukou, V.N. Stathopoulos, Y. Caouris, M. Gr, Vrachopoulos. (2021). https://doi.org/10.1016/J.IJFT.2021.100075

    Article  Google Scholar 

  9. R. Zeinelabdein, S. Omer, G. Gan. (2018). https://doi.org/10.1016/J.RSER.2017.10.046

    Article  Google Scholar 

  10. F. Souayfane, F. Fardoun, P. H. Biwole. (2016). https://doi.org/10.1016/J.ENBUILD.2016.04.006

    Article  Google Scholar 

  11. E. Osterman, V.V. Tyagi, V. Butala, N.A. Rahim, U. Stritih. (2012). https://doi.org/10.1016/J.ENBUILD.2012.03.022

    Article  Google Scholar 

  12. S.A. Nada, W.G. Alshaer, R. M. Saleh. (2020). https://doi.org/10.1016/J.JOBE.2019.101153

    Article  Google Scholar 

  13. X.Y. Li, L. Yang, X.L. Wang, X.Y. Miao, Y. Yao, Q. Q. Qiang. (2018). https://doi.org/10.1016/J.ENERGY.2018.02.107

    Article  Google Scholar 

  14. J.M. Belman-Flores, J.M. Barroso-Maldonado, A.P. Rodríguez-Muñoz, G. Camacho-Vázquez. (2015). https://doi.org/10.1016/J.RSER.2015.07.003

    Article  Google Scholar 

  15. M. Mastani Joybari, F. Haghighat, J. Moffat, P. Sra. (2015) doi:https://doi.org/10.1016/J.ENBUILD.2015.06.016.

  16. T. Yang, W.P. King, N. Miljkovic. (2021). https://doi.org/10.1016/J.XCRP.2021.100540

    Article  Google Scholar 

  17. T.M.I. Mahlia, T.J. Saktisahdan, A. Jannifar, M.H. Hasan, H. S. C. Matseelar. (2014). https://doi.org/10.1016/j.rser.2014.01.068

    Article  Google Scholar 

  18. H. Jouhara, A. Żabnieńska-Góra, N. Khordehgah, D. Ahmad, T. Lipinski. (2020). https://doi.org/10.1016/J.IJFT.2020.100039

    Article  Google Scholar 

  19. K. Faraj, M. Khaled, J. Faraj, F. Hachem, C. Castelain. (2020). https://doi.org/10.1016/J.RSER.2019.109579

    Article  Google Scholar 

  20. C. Veerakumar A. Sreekumar. (2016) doi:https://doi.org/10.1016/J.IJREFRIG.2015.12.005.

  21. A. A. M. Omara A. A. A. Abuelnour. (2019) doi:https://doi.org/10.1002/er.4507.

  22. A. Pirvaram, S.M. Sadrameli, L. Abdolmaleki. (2021). https://doi.org/10.1002/ER.5853

    Article  Google Scholar 

  23. S.M. Sadrameli, F. Motaharinejad, M. Mohammadpour, F. Dorkoosh. (2019). https://doi.org/10.1007/S00231-018-02536-3

    Article  Google Scholar 

  24. O. Okogeri V. N. Stathopoulos. (2021) doi:https://doi.org/10.1016/J.IJFT.2021.100081.

  25. M. Li, Q. Guo, S. Nutt. (2017). https://doi.org/10.1016/J.SOLENER.2017.02.003

    Article  Google Scholar 

  26. G. Righetti, L. Doretti, C. Zilio, G.A. Longo, S. Mancin. (2020). https://doi.org/10.1016/J.IJFT.2020.100035

    Article  Google Scholar 

  27. B. Nie, Z. Du, B. Zou, Y. Li, Y. Ding. (2020). https://doi.org/10.1016/J.ENBUILD.2020.109895

    Article  Google Scholar 

  28. G. Dogkas, M.K. Koukou, J. Konstantaras, C. Pagkalos, K. Lymperis, V. Stathopoulos, L. Coelho, A. Rebola, M. Gr, Vrachopoulos. (2020). https://doi.org/10.1016/j.ijft.2020.100027

    Article  Google Scholar 

  29. T. Silva, R. Vicente, F. Rodrigues. (2016). https://doi.org/10.1016/J.RSER.2015.07.201

    Article  Google Scholar 

  30. M. K. Koukou, G. Dogkas, M. Gr. Vrachopoulos, J. Konstantaras, C. Pagkalos, V. N. Stathopoulos, P. K. Pandis, K. Lymperis, L. Coelho, A. Rebola. (2020) doi:https://doi.org/10.1016/J.IJFT.2019.100003.

  31. J. Pereira da Cunha P. Eames. (2016) doi:https://doi.org/10.1016/J.APENERGY.2016.05.097.

  32. L. Yang, J. nan Huang, F. Zhou. (2020) doi:https://doi.org/10.1016/j.enconman.2020.112876.

  33. C. Barrenechea, H. Navarro, S. Serrano, L.F. Cabeza, A. I. Fernández. (2014). https://doi.org/10.1016/J.EGYPRO.2014.10.249

    Article  Google Scholar 

  34. E. Oró, A. de Gracia, A. Castell, M.M. Farid, L. F. Cabeza. (2012). https://doi.org/10.1016/J.APENERGY.2012.03.058

    Article  Google Scholar 

  35. S. R. L. da Cunha J. L. B. de Aguiar. (2020) doi:https://doi.org/10.1016/j.est.2019.101083.

  36. M. Saffari, A. de Gracia, C. Fernández, L. F. Cabeza. (2017). https://doi.org/10.1016/j.apenergy.2017.05.107

    Article  Google Scholar 

  37. O. G. Pop, L. Fechete Tutunaru, F. Bode, A. C. Abrudan, M. C. Balan. (2018) doi:https://doi.org/10.1016/J.APENERGY.2017.12.122.

  38. G. Li, Y. Hwang, R. Radermacher. (2012). https://doi.org/10.1016/J.IJREFRIG.2012.06.003

    Article  Google Scholar 

  39. S.R. Rakkappan, S. Sivan, S.N. Ahmed, M. Naarendharan, P. Sai Sudhir. (2021). https://doi.org/10.1016/J.IJREFRIG.2020.11.004

    Article  Google Scholar 

  40. B. Nie, Z. Du, J. Chen, B. Zou, Y. Ding. (2021). https://doi.org/10.1002/ER.6903

    Article  Google Scholar 

  41. A. H. Mosaffa, F. Talati, H. Basirat Tabrizi, M. A. Rosen. (2012) doi:https://doi.org/10.1016/J.ENBUILD.2012.02.053.

  42. M. Fashandi, S. N Leung. (2017). https://doi.org/10.1007/s40243-017-0098-0

    Article  Google Scholar 

  43. G. Zhou, Y. Yang, H. Xu. (2011). https://doi.org/10.1016/J.SOLENER.2010.12.028

    Article  Google Scholar 

  44. A.A.M. Omara, A. A. M. Mohammedali. (2020). https://doi.org/10.1016/j.ifset.2020.102522

    Article  Google Scholar 

  45. C. Pagkalos, G. Dogkas, M.K. Koukou, J. Konstantaras, K. Lymperis, M. G. Vrachopoulos. (2020). https://doi.org/10.1016/j.ijft.2019.100006

    Article  Google Scholar 

  46. G. Li, Y. Hwang, R. Radermacher, H. H. Chun. (2013). https://doi.org/10.1016/j.energy.2012.12.002

    Article  Google Scholar 

  47. M. I. H. Khan H. M. M. Afroz. (2013) doi:https://doi.org/10.3923/ajaps.2013.56.67.

  48. E. Oró, C. Barreneche, M.M. Farid, L. F. Cabeza. (2013). https://doi.org/10.1016/J.RENENE.2013.01.043

    Article  Google Scholar 

  49. H. Khan H. M. M. Afroz, Recent advances in Mechanical Engineering. 3, 1 (2014)

  50. R. Elarem, S. Mellouli, E. Abhilash, A. Jemni. (2017). https://doi.org/10.1016/j.applthermaleng.2017.07.113

    Article  Google Scholar 

  51. Z. Liu, D. Zhao, Q. Wang, Y. Chi, L. Zhang. (2017). https://doi.org/10.1016/j.ijrefrig.2017.04.009

    Article  Google Scholar 

  52. A. Pirvaram, S.M. Sadrameli, L. Abdolmaleki. (2019). https://doi.org/10.1016/J.ENERGY.2019.05.129

    Article  Google Scholar 

  53. B. Nie, X. She, Zh. Du, C. Xie, Y. Li, Z. He, Y. Ding. (2019). https://doi.org/10.1016/J.APENERGY.2019.05.057

    Article  Google Scholar 

  54. N. Chaiyat. (2015) doi:https://doi.org/10.1016/J.ENCONMAN.2015.01.068.

  55. J. Riffat, C. Kutlu, E. Tapia-Brito, S. Tekpetey, F.B. Agyenim, Y. Su, S. Riffat. (2021). https://doi.org/10.1080/15435075.2021.1984244

    Article  Google Scholar 

  56. M. A. Ben Taher, T. Kousksou, Y. Zeraouli, M. Ahachad, M. Mahdaoui. (2021) doi:https://doi.org/10.1016/J.EST.2021.103097.

  57. F. Ahmed, W. A. Khan. (2021). https://doi.org/10.1016/j.egyr.2021.01.023

    Article  Google Scholar 

  58. E. Osterman, V. Butala, U. Stritih. (2015). https://doi.org/10.1016/J.ENBUILD.2015.04.012

    Article  Google Scholar 

  59. K. Du, J. Calautit, Z. Wang, Y. Wu, H. Liu. (2018). https://doi.org/10.1016/J.APENERGY.2018.03.005

    Article  Google Scholar 

  60. A. Jamekhorshid, S.M. Sadrameli, M. Farid. (2014). https://doi.org/10.1016/j.rser.2013.12.033

    Article  Google Scholar 

  61. D. Z. Chen, Si-Yin Qin, G. C.P. Tsui, C. Tang, X. Ouyang, J. Liu, J.Tang, J. Zuo. (2019) doi:https://doi.org/10.1016/j.compositesb.2018.08.066.

  62. E. Alehosseini S. M. Jafari. (2020) doi:https://doi.org/10.1016/j.cis.2020.102226.

  63. A. Marani, M. L. Nehdi. (2019). https://doi.org/10.1016/J.CONBUILDMAT.2019.05.064

    Article  Google Scholar 

  64. S. A. Memon. (2014) doi:https://doi.org/10.1016/J.RSER.2013.12.042.

  65. L. Zheng, W. Zhang, L. Xie, W. Wang, H. Tian, M. Chen. (2019). https://doi.org/10.1093/ijlct/cty062

    Article  Google Scholar 

  66. S. Deng, C. Nie, H. Jiang, W. B. Ye. (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.126

    Article  Google Scholar 

  67. X.Y. Li, Q.Q. Zhao, D. Qu. (2013). https://doi.org/10.1016/J.SOLENER.2013.06.020

    Article  Google Scholar 

  68. S. Deng, C. Nie, G. Wei, W. B. Ye. (2019). https://doi.org/10.1016/j.enbuild.2018.11.018

    Article  Google Scholar 

  69. D. Zhao, G. Tan. (2015). https://doi.org/10.1016/J.APENERGY.2014.10.051

    Article  Google Scholar 

  70. D. Zhao, G. Tan. (2014). https://doi.org/10.1016/J.ENERGY.2014.01.090

    Article  Google Scholar 

  71. R. Parameshwaran S. Kalaiselvam. (2014) doi:https://doi.org/10.1016/j.enbuild.2013.09.052.

  72. M. Gorzin, M.J. Hosseini, M. Rahimi, R. Bahrampoury. (2019). https://doi.org/10.1016/j.est.2018.12.023

    Article  Google Scholar 

  73. L. Yang, X. Zhang, G. Xu. (2014). https://doi.org/10.1016/j.enbuild.2013.09.045

    Article  Google Scholar 

  74. A. H. Mosaffa, C. A. Infante Ferreira, F. Talati, M. A. Rosen. (2013) doi:https://doi.org/10.1016/J.ENCONMAN.2012.10.018.

  75. S. Nekoonam, R. Roshandel. (2021). https://doi.org/10.1016/j.tsep.2021.100873

    Article  Google Scholar 

  76. M. Ezra, Y. Kozak, V. Dubovsky, G. Ziskind. (2016). https://doi.org/10.1016/J.APPLTHERMALENG.2015.09.040

    Article  Google Scholar 

  77. T.K. Aldoss, M. M. Rahman. (2014). https://doi.org/10.1016/J.ENCONMAN.2014.03.047

    Article  Google Scholar 

  78. S. Kuboth, A. König-Haagen, D. Brüggemann. (2017). https://doi.org/10.3390/EN10030274

    Article  Google Scholar 

  79. G. Peiró, J. Gasia, L. Miró, L. F. Cabeza. (2015). https://doi.org/10.1016/J.RENENE.2015.05.029

    Article  Google Scholar 

  80. Y. Allouche, S. Varga, C. Bouden, A. C. Oliveira. (2017). https://doi.org/10.1016/j.apenergy.2017.01.001

    Article  Google Scholar 

  81. J. Jia, W. L. Lee. (2015). https://doi.org/10.1016/J.ENERGY.2015.10.053

    Article  Google Scholar 

  82. M. De Falco, M. Capocelli, A. Giannattasio. (2016). https://doi.org/10.1016/j.enbuild.2016.04.016

    Article  Google Scholar 

  83. A.C. Marques, G.F. Davies, G.G. Maidment, J.A. Evans, I. D. Wood. (2014). https://doi.org/10.1016/J.APPLTHERMALENG.2013.11.043

    Article  Google Scholar 

  84. J. Geppert, R. Stamminger. (2013). https://doi.org/10.1016/J.ENCONMAN.2013.08.027

    Article  Google Scholar 

  85. T. Edition. (2017) doi:https://doi.org/10.1002/9781119230793.

  86. Md. Imran, H. Khan. (2016). https://doi.org/10.1142/S201013251630007X

    Article  Google Scholar 

  87. A. Pavithran, M. Sharma, A. K. Shukla. (2021). https://doi.org/10.1016/J.MATPR.2020.09.344

    Article  Google Scholar 

  88. P. Geete, H. Singh, S.K. Somani, Appl. Engineering Res. 13, 19 (2018)

    Google Scholar 

  89. M. Raja, G. Yadav, Scientific Res. Engineering & Technology, (2015)

  90. G. Yan, Y. Liu, S. Qian, J. Yu. (2019). https://doi.org/10.1016/J.APPLTHERMALENG.2019.114091

    Article  Google Scholar 

  91. W.L. Cheng, B.J. Mei, Y.N. Liu, Y.H. Huang, X. D. Yuan. (2011). https://doi.org/10.1016/J.ENERGY.2011.08.050

    Article  Google Scholar 

  92. P. Kumar, R. Elakkiyadasan, N. Sathishkumar, G. Prabhu, T. Balasubramanian. (2020). https://doi.org/10.5937/FME2003620M

    Article  Google Scholar 

  93. R. Siddharth, K. Jagannath, P. Kini Giridhar, K. K. Vishnumurthy. (2018) doi:https://doi.org/10.1051/MATECCONF/201714404002.

  94. E. Oró, L. Miró, M.M. Farid, L. F. Cabeza. (2012). https://doi.org/10.1016/J.IJREFRIG.2012.05.004

    Article  Google Scholar 

  95. X.D. Yuan, W. L. Cheng. (2014). https://doi.org/10.1016/J.ENCONMAN.2014.04.086

    Article  Google Scholar 

  96. M. Antony Forster Raj, S. Joseph Sekhar. (2019) doi:https://doi.org/10.1007/S10973-018-7785-7.

  97. W.L. Cheng, R.M. Zhang, K. Xie, N. Liu, J. Wang. (2013). https://doi.org/10.1016/j.solmat.2010.05.020

    Article  Google Scholar 

  98. W.L. Cheng, R.M. Zhang, K. Xie, N. Liu, J. Wang. (2010). https://doi.org/10.1016/j.solmat.2010.05.020

    Article  Google Scholar 

  99. J. Li, L. He, T. Liu, X. Cao, H. Zhu. (2013). https://doi.org/10.1016/j.solmat.2013.07.017

    Article  Google Scholar 

  100. A. Karaipekli, A. Biçer, A. Sarı, V. V. Tyagi. (2017) doi: https://doi.org/10.1016/j.enconman.2016.12.053.

  101. D.G. Atinafu, W. Dong, X. Huang, H. Gao, G. Wang. (2018). https://doi.org/10.1016/j.apenergy.2017.12.025

    Article  Google Scholar 

  102. D. Zou, X. Ma, X. Liu, P. Zheng, Y. Hu. (2018). https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2017.12.024

    Article  Google Scholar 

  103. G. Sonnenrein, A. Elsner, E. Baumhögger, A. Morbach, K. Fieback, J. Vrabec (2015). https://doi.org/10.1016/J.IJREFRIG.2014.12.011

    Article  Google Scholar 

  104. W.L. Cheng, X. D. Yuan (2013). https://doi.org/10.1016/J.ENERGY.2013.06.045

    Article  Google Scholar 

  105. S. Bista, S.E. Hosseini, E. Owens, G. Phillips. (2018). https://doi.org/10.1016/J.APPLTHERMALENG.2018.07.068

    Article  Google Scholar 

  106. A. Maiorino, M.G. Del Duca, A. Mota-Babiloni, A. Greco, C. Aprea. (2019). https://doi.org/10.1016/J.IJREFRIG.2019.02.005

    Article  Google Scholar 

  107. M. Berdja, A. Hamid, O. Sari. (2019). https://doi.org/10.1016/J.IJREFRIG.2018.10.003

    Article  Google Scholar 

  108. G. Sonnenrein, E. Baumhögger, A. Elsner, K. Fieback, A. Morbach, A. Paul, J. Vrabec. (2015). https://doi.org/10.1016/J.IJREFRIG.2015.06.030

    Article  Google Scholar 

  109. M.I.H. Khan, H. M. M. Afroz. (2013). https://doi.org/10.3923/AJAPS.2013.56.67

    Article  Google Scholar 

  110. Y. Yusufoglu, T. Apaydin, S. Yilmaz, H. O. Paksoy. (2015). https://doi.org/10.1016/J.IJREFRIG.2015.04.020

    Article  Google Scholar 

  111. G. Sonnenreina, E. Baumhöggera, A. Elsnera, A. Morbachb, M. Neuköttera, A. Paula, J. Vrabec. (2020). https://doi.org/10.1016/J.IJREFRIG.2020.07.025

    Article  Google Scholar 

  112. L. Abdolmaleki, S.M. Sadrameli, A. Pirvaram. (2020). https://doi.org/10.1016/J.RENENE.2019.06.035

    Article  Google Scholar 

  113. R. Fioretti, P. Principi, B. Copertaro. (2016). https://doi.org/10.1016/J.ENCONMAN.2016.05.071

    Article  Google Scholar 

  114. B. Copertaro, P. Principi, R. Fioretti. (2016). https://doi.org/10.1016/J.APPLTHERMALENG.2016.04.050

    Article  Google Scholar 

  115. J. Taneja, K. Lutz, D. Culler. (2013). https://doi.org/10.1145/2487166.2487209

    Article  Google Scholar 

  116. W. long Cheng, M. Ding, X. dong Yuan, B. C. Han. (2017) doi:https://doi.org/10.1016/j.enconman.2016.11.029.

  117. O.G. Zarajabad, R. Ahmadi, S. Ghaffari. (2017). https://doi.org/10.24018/EJERS.2017.2.9.455

    Article  Google Scholar 

  118. A. Karthikeyan, V. Aakhash Sivan, A. Maher Khaliq, A. Anderson. (2021) doi:https://doi.org/10.1016/J.MATPR.2020.09.296.

  119. I.H. Khan, H.M.M. Afroz, M. A. Karim. (2017). https://doi.org/10.1080/15435075.2016.1261705

    Article  Google Scholar 

  120. P. Glouannec, B. Michel, G. Delamarre, Y. Grohens. (2014). https://doi.org/10.1016/J.APPLTHERMALENG.2014.07.044

    Article  Google Scholar 

  121. P. Wang, X. Wang, Y. Huang, C. Li, Z. Peng, Y. Ding. (2015). https://doi.org/10.1016/J.APENERGY.2014.12.050

    Article  Google Scholar 

  122. C.R. Abujas, A. Jové, C. Prieto, M. Gallas, L. F. Cabeza. (2016). https://doi.org/10.1016/J.RENENE.2016.06.003

    Article  Google Scholar 

  123. E. Gariboldi, L.P.M. Colombo, D. Fagiani, Z. Li. (2019). https://doi.org/10.3390/MA12162552

    Article  Google Scholar 

  124. N. Sharifi, T.L. Bergman, A. Faghri. (2011). https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2011.05.027

    Article  Google Scholar 

  125. P.B. Salunkhe, P. S. Shembekar. (2012). https://doi.org/10.1016/J.RSER.2012.05.037

    Article  Google Scholar 

  126. H.J. Xu, C. Y. Zhao. (2016). https://doi.org/10.1016/j.renene.2015.08.007

    Article  Google Scholar 

  127. P.A. Galione, C.D. Pérez-Segarra, I. Rodríguez, A. Oliva, J. Rigola. (2015). https://doi.org/10.1016/j.apenergy.2014.12.084

    Article  Google Scholar 

  128. ssH. Shamsi, M. Boroushaki, H. Geraei. (2017) doi:https://doi.org/10.1016/J.EST.2017.02.003.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umberto Berardi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abdolmaleki, L., Berardi, U. Single and Multi-phase Change Materials Used in Cooling Systems. Int J Thermophys 43, 61 (2022). https://doi.org/10.1007/s10765-022-02989-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-02989-z

Keywords

  • Phase change materials
  • Cooling systems
  • Air-conditioning systems
  • Refrigerators and freezers
  • Thermal energy storage