Skip to main content

Droplet Evaporation-Based Approach for Microliter Fuel Property Measurements

Abstract

Small-volume, high-throughput screening techniques are sought to enable downselection from a large candidate pool of bio-blendstocks to a select few, having physical properties consistent with requirements of downsized, turbo-boosted internal combustion engines. This work presents a droplet evaporation-based approach to predict heat of vaporization, vapor pressure, diffusion coefficient, and Lennard–Jones parameters for an unknown fuel. Two different schemes, considering the isothermal evaporation of a moving droplet in ambient air, are proposed, which combine droplet velocity and temperature measurements, with some known properties to predict unknown properties. The schemes utilize an inverse solution of a transient model of droplet evaporation solved in an iterative fashion. A baseline scheme, which only requires droplet size change measurements, is evaluated using test data for three liquid fuels, comprising of alkanes and alcohols, as obtained in a temperature-controlled chamber. Results yield temperature-dependent heat of vaporization and vapor pressure predictions within 10 % and 22 %, respectively, of reference values. The advanced scheme, which additionally requires droplet temperature measurement, is numerically evaluated in the current work and will be experimentally validated in future efforts. The advanced scheme is found to significantly improve prediction quality, with deviations less than 2 % and 1 % for heat of vaporization and vapor pressure, while also predicting diffusion coefficient and Lennard–Jones parameters within 5 % and 8 %, respectively. The combined set of approaches, which primarily track droplet evaporation, can be incorporated into a small-volume, high-throughput fuel screening process.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Abbreviations

P :

Pressure

Y :

Mass fraction

\(\dot{m}_l\) :

Evaporation rate

\(\rho\) :

Density

k :

Thermal conductivity

\(\chi\) :

Mass diffusion coefficient

Re :

Reynolds number

Sc :

Schmidt number

Sh :

Sherwood number

\(H_F\) :

Heat of vaporization

\(R_u\) :

Universal gas constant

\(B_T\) :

Heat transfer number

\(\sigma\) :

LJ length

\(m_l\) :

Droplet mass

T :

Temperature

D :

Diameter

u :

Droplet velocity

\(C_p\) :

Specific heat

\(\mu\) :

Dynamic viscosity

MW :

Molecular weight

Nu :

Nusselt number

Pr :

Prandlt number

Nu :

Nusselt number

\(C_D\) :

Drag coefficient

\(B_M\) :

Mass transfer number

\(g_0\) :

Gravitational acceleration

\(\dfrac{\epsilon }{k_b}\) :

LJ energy parameter

\(\bar{\phi }\) :

Property \(\phi\) at film temperature and mass fraction Eq. A4

F :

Fuel

c :

Carrier gas

i :

Interface

boil :

Boiling point

f :

Film

vap :

Vapor

l :

Liquid

\(\infty\) :

Far field ambient

References

  1. W. Zeng, M. Xu, M. Zhang, Y. Zhang, D.J. Cleary, Macroscopic characteristics for direct-injection multi-hole sprays using dimensionless analysis. Exp. Therm. Fluid Sci. 40, 81–92 (2012)

    Article  Google Scholar 

  2. M.A. Ratcliff, B. Windom, G.M. Fioroni, P.S. John, S. Burke, J. Burton, E.D. Christensen, P. Sindler, R.L. McCormick, Impact of ethanol blending into gasoline on aromatic compound evaporation and particle emissions from a gasoline direct injection engine. Appl. Energy 250, 1618–1631 (2019)

    Article  Google Scholar 

  3. R.C. Reid, J.M. Prausnitz, B.E. Poling, The Properties of Gases and Liquids (McGraw Hill Book Co., New York, 1987)

    Google Scholar 

  4. L.P. Wyszynski, C.R. Stone, G.T. Kalghatgi, The Volumetric Efficiency of Direct and Port Injection Gasoline Engines with Different Fuels (Technical report, SAE Technical Paper, 2002)

  5. E.W. Chow, J.B. Heywood, R.L. Speth, (SAE Technical Paper, 2014)

  6. M.A. Ratcliff, J.L. Burton, P. Sindler, R.L. McCormick, E.D. Christensen, L.A. Fouts, Effects of heat of vaporization and octane sensitivity on knock-limited spark ignition engine performance. Tech. rep., National Renewable Energy Lab.(NREL), Golden (2018)

  7. G.M. Chupka, E. Christensen, L. Fouts, T.L. Alleman, M.A. Ratcliff, R.L. McCormick, Heat of vaporization measurements for ethanol blends up to 50 volume percent in several hydrocarbon blendstocks and implications for knock in si engines. SAE Int. J. Fuels Lubr. 8, 251–263 (2015)

    Article  Google Scholar 

  8. D.A. Splitter, J.P. Szybist, Experimental investigation of spark-ignited combustion with high-octane biofuels and EGR. 2. Fuel and EGR effects on knock-limited load and speed. Energy Fuels 28, 1432–1445 (2014)

    Article  Google Scholar 

  9. G.M. Fioroni, E.D. Christensen, L.A. Fouts, R.L. McCormick, Heat of vaporization and species evolution suring gasoline evaporation measured by dsc/tga/ms for blends of c1 to c4 alcohols in commercial gasoline blendstocks. Tech. rep., National Renewable Energy Lab.(NREL), Golden (United States) (2019)

  10. G. Mendes, H.G. Aleme, P.J. Barbeira, Reid vapor pressure prediction of automotive gasoline using distillation curves and multivariate calibration. Fuel 187, 167–172 (2017)

    Article  Google Scholar 

  11. G.M. Fioroni, L. Fouts, E. Christensen, J.E. Anderson, R.L. McCormick, Measurement of heat of vaporization for research gasolines and ethanol blends by DSC/TGA. Energy Fuels 32, 12607–12616 (2018)

    Article  Google Scholar 

  12. A. Landera, N. Mac Dowell, A. George, Development of robust models for the prediction of Reid vapor pressure (RVP) in fuel blends and their application to oxygenated biofuels using the saft-\(\gamma\) approach. Fuel 283, 118,624 (2021)

    Article  Google Scholar 

  13. I. Hatzioannidis, E.C. Voutsas, E. Lois, D.P. Tassios, Measurement and prediction of Reid vapor pressure of gasoline in the presence of additives. J. Chem. Eng. Data 43, 386–392 (1998)

    Article  Google Scholar 

  14. K. Kar, T. Last, C. Haywood, R. Raine, Measurement of vapor pressures and enthalpies of vaporization of gasoline and ethanol blends and their effects on mixture preparation in an si engine. SAE Int. J. Fuels Lubr. 1, 132–144 (2009)

    Article  Google Scholar 

  15. D.J. Gaspar, S.D. Phillips, E. Polikarpov, K.O. Albrecht, S.B. Jones, A. George, A. Landera, D.M. Santosa, D.T. Howe, A.G. Baldwin et al., Measuring and predicting the vapor pressure of gasoline containing oxygenates. Fuel 243, 630–644 (2019)

    Article  Google Scholar 

  16. R.L. McCormick, G. Fioroni, L. Fouts, E. Christensen, J. Yanowitz, E. Polikarpov, K. Albrecht, D.J. Gaspar, J. Gladden, A. George, Selection criteria and screening of potential biomass-derived streams as fuel blendstocks for advanced spark-ignition engines. SAE Int. J. Fuels Lubr. 10, 442–460 (2017)

    Article  Google Scholar 

  17. W. Dang, W. Zhao, I. Schoegl, S. Menon, A small-volume, high-throughput approach for surface tension and viscosity measurements of liquid fuels. Meas. Sci. Technol. 31(9) (2020)

  18. W. Dang, M. Gurunadhan, I. Schoegl, S. Menon, Temperature effects on droplet oscillation decay with application to fuel property measurement. At. Sprays 31(10) (2021)

  19. H.E. McClelland, P.C. Jurs, Quantitative structure–property relationships for the prediction of vapor pressures of organic compounds from molecular structures. J. Chem. Inf. Comput. Sci. 40, 967–975 (2000)

    Article  Google Scholar 

  20. D.N. Bolmatenkov, M.I. Yagofarov, A.A. Notfullin, B.N. Solomonov, Calculation of the vaporization enthalpies of alkylaromatic hydrocarbons as a function of temperature from their molecular structure. Fluid Phase Equilib. p. 113303 (2021)

  21. R. Naef, W.E. Acree Jr., Calculation of the vapour pressure of organic molecules by means of a group-additivity method and their resultant Gibbs free energy and entropy of vaporization at 298.15 k. Molecules 26, 1045 (2021)

    Article  Google Scholar 

  22. S.T. Lin, J. Chang, S. Wang, W.A. Goddard, S.I. Sandler, Prediction of vapor pressures and enthalpies of vaporization using a COSMO solvation model. J. Phys. Chem. A 108, 7429–7439 (2004)

    Article  Google Scholar 

  23. S. Verevkin, V. Emel’yanenko, V. Diky, C. Muzny, R. Chirico, M. Frenkel, New group-contribution approach to thermochemical properties of organic compounds: hydrocarbons and oxygen-containing compounds. J. Phys. Chem. Ref. Data 42, 033,102 (2013)

    Article  Google Scholar 

  24. S.N.R. Isfahani, V.M. Sauer, I. Schoegl, Effects of dilution and pressure on combustion characteristics within externally heated micro-tubes. Proc. Combust. Inst. 38, 6695–6702 (2021)

    Article  Google Scholar 

  25. B. Abramzon, W. Sirignano, Droplet vaporization model for spray combustion calculations. Int. J. Heat Mass Transf. 32, 1605–1618 (1989)

    Article  Google Scholar 

  26. S. Aggarwal, F. Peng, A review of droplet dynamics and vaporization modeling for engineering calculations. J. Eng. Gas Turbines Power 117, 453–461 (1995)

    Article  Google Scholar 

  27. S.S. Sazhin, Advanced models of fuel droplet heating and evaporation. Prog. Energy Combust. Sci. 32, 162–214 (2006)

    Article  ADS  Google Scholar 

  28. A.K. Ray, E.J. Davis, P. Ravindran, Determination of ultra-low vapor pressures by submicron droplet evaporation. J. Chem. Phys. 71, 582–587 (1979)

    Article  ADS  Google Scholar 

  29. A. Putnam, Integratable form of droplet drag coefficient. ARSJ-Am Rocket Soc. J. 31, 1467–1468 (1961)

    Google Scholar 

  30. F. Foucher, P. Higelin, C. Mounaim-Rousselle, P. Dagaut, Influence of ozone on the combustion of n-heptane in a HCCI engine. Proc. Combust. Inst. 34, 3005–3012 (2013)

    Article  Google Scholar 

  31. Y. Qian, X. Wang, L. Zhu, X. Lu, Experimental studies on combustion and emissions of RCCI (reactivity controlled compression ignition) with gasoline/n-heptane and ethanol/n-heptane as fuels. Energy 88, 584–594 (2015)

    Article  Google Scholar 

  32. S.M. Sarathy, G. Kukkadapu, M. Mehl, W. Wang, T. Javed, S. Park, M.A. Oehlschlaeger, A. Farooq, W.J. Pitz, C.J. Sung, Ignition of alkane-rich face gasoline fuels and their surrogate mixtures. Proc. Combust. Inst. 35, 249–257 (2015)

    Article  Google Scholar 

  33. D.J. Gaspar, B.H. West, D. Ruddy, T.J. Wilke, E. Polikarpov, T.L. Alleman, A. George, E. Monroe, R.W. Davis, D. Vardon, et al., Top ten blendstocks derived from biomass for turbocharged spark ignition engines: bio-blendstocks with potential for highest engine efficiency. Tech. rep., Pacific Northwest National Lab. (PNNL), Richland (2019)

  34. S.K. Bhatia, S.H. Kim, J.J. Yoon, Y.H. Yang, Current status and strategies for second generation biofuel production using microbial systems. Energy Convers. Manag. 148, 1142–1156 (2017)

    Article  Google Scholar 

  35. M. Stewart, K. Arnold, Emulsions and Oil Treating Equipment (2009), pp. 81–106

  36. M. Riazi, T. Albahri, A. Alqattan, Prediction of Reid vapor pressure of petroleum fuels. Pet. Sci. Technol. 23, 75–86 (2005)

    Article  Google Scholar 

  37. A. Baghban, M. Bahadori, Z. Ahmad, T. Kashiwao, A. Bahadori, Modeling of true vapor pressure of petroleum products using Anfis algorithm. Pet. Sci. Technol. 34, 933–939 (2016)

    Article  Google Scholar 

  38. C.L. Yaws, Thermophysical Properties of Chemicals and Hydrocarbons (William Andrew, Norwich, 2008)

    Google Scholar 

  39. M. Obergruber, V. Honig, P. Prochazka, V. Kucerova, M. Kotek, J. Boucek, J. Marik, Physicochemical properties of biobutanol as an advanced biofuel. Materials 14, 914 (2021)

    Article  ADS  Google Scholar 

  40. E.N. Fuller, P.D. Schettler, J.C. Giddings, New method for prediction of binary gas-phase diffusion coefficients. Ind. Eng. Chem. Res. 58, 18–27 (1966)

    Article  Google Scholar 

  41. R.J. Kee, M.E. Coltrin, P. Glarborg, Chemically Reacting Flow: Theory and Practice (Wiley, Chichester, 2005)

    Google Scholar 

  42. C. Zheng, D.M. Coombs, B. Akih-Kumgeh, Real gas model parameters for high-density combustion from chemical kinetic model data. ACS Omega 4, 3074–3082 (2019)

    Article  Google Scholar 

  43. R.J. Kee, G. Dixon-Lewis, J. Warnatz, M.E. Coltrin, J.A. Miller, A fortran computer code package for the evaluation of gas-phase multicomponent transport properties. Sandia National Laboratories Report SAND86-8246 13, 80401 (1986)

    Google Scholar 

  44. M. Yuen, L. Chen, On drag of evaporating liquid droplets. Combust. Sci. Technol. 14, 147–154 (1976)

    Article  Google Scholar 

  45. C. Wilke, C. Lee, Estimation of diffusion coefficients for gases and vapors. Ind. Eng. Chem. Res. 47, 1253–1257 (1955)

    Article  Google Scholar 

Download references

Acknowledgments

This research was conducted as part of the Co-Optimization of Fuels & Engines (Co-Optima) project sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), Bioenergy Technologies and Vehicle Technologies Offices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanjun Dang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Property Definition

$$\begin{aligned}&Sh^*=2+\dfrac{(Sh_0-2)}{F_M}; \quad Nu^*=2+\dfrac{(Nu_0-2)}{F_T}, \end{aligned}$$
(A1)
$$\begin{aligned}&Sh_0=1+(1+Re Sc)^{1/3} \Phi \left( Re \right) ; \quad Nu_0=1+(1+Re Pr)^{1/3} \Phi \left( Re \right), \end{aligned}$$
(A2)
$$\begin{aligned}&F_{(T,M)}=(1+B_{(T,M)})^{0.7} \dfrac{\text {ln} \left( 1+B_{(T,M)} \right) }{B_{(T,M)}}, \end{aligned}$$
(A3)

where \(\Phi \left( Re \right) =1\) for \(Re\le 1\) and \(\Phi \left( Re \right) =Re^{0.077}\) when \(1<Re\le 400\)

The fuel vapor mass fraction of the film and its temperature are evaluated based on ’1/3 rule’ recommended in the work of Yuen and Chen  [44] given by,

$$\begin{aligned} \bar{T}_f=T_i+\dfrac{(T_{\infty }-T_i)}{3}; \quad \bar{Y}_F=Y_i+\dfrac{(Y_{\infty }-Y_i)}{3}. \end{aligned}$$
(A4)

For the simulations, which provide input to Scheme-II, the empirical diffusion coefficient Eqn.A5 defined in the work of Fuller et. al  [40] was employed.

$$\begin{aligned} \bar{\chi }_{fc}=\dfrac{0.00143 \bar{T}^{1.75}_f\times 10^{-4}}{P_{\infty }M^{0.5}_{fc}\left( \zeta ^{1/3}_{c}+\zeta ^{1/3}_{F} \right) ^2}, \end{aligned}$$
(A5)

where \(\zeta\) is the diffusion volume, evaluated based on sum of element wise contributions. For the present study, the diffusion volume for air \(\zeta _c=19.7\) and diffusion volume of \(\textit{n}\)-heptane vapor, \(\zeta _F=148.2\).

Similarly, the temperature-dependent HOV of \(\textit{n}\)-heptane is defined based on the handbook of Yaws  [38], given by

$$\begin{aligned} H_{F}=(A_v(1-T_i/T_c)^{n_v})\times 10^6/MW_F; \end{aligned}$$
(A6)

where for \(\textit{n}\)-heptane, \(A_v=49.73 , T_c=540.26,~ \& ~n_v=0.360\). The temperature-dependent vapor pressure is evaluated by Antoine equation given by,

$$\begin{aligned} \log _{10} \left( P_{vap} \right) =A-\dfrac{B}{(C+T_i-273)}, \end{aligned}$$
(A7)

where for \(\textit{n}\)-heptane, \(A=4.0404, B=1263.909, C=216.432\).

The vapor phase thermal conductivity was defined based on the work of Chung et. al  [3], expressed as,

$$\begin{aligned}&k_F= \dfrac{\mu _F 3.75 \psi R_u}{MW_F}, \end{aligned}$$
(A8)
$$\begin{aligned}&\psi =1+\alpha \left[ \dfrac{\left( 0.215+0.28288 \alpha -1.061 \beta +0.2665 Z \right) }{\left( 0.6366+\beta Z+1.061 \alpha \beta \right) }\right], \end{aligned}$$
(A9)

where \(\alpha =\dfrac{C_v}{R}-1.5\), \(\beta =0.7862-0.7109 \omega + 1.3618 \omega ^2\) and \(Z=2.0+10.5 \dfrac{T_f}{T_c}\). \(T_c\) represents the critical temperature of the fuel and \(\omega\) refers to the accentric factor of the fuel. For fuel vapor specific heat and viscosity, fourth order and third order polynomials of temperature are, respectively, employed, with the material specific polynomial coefficients listed in the work of Poling et. al  [3] and Yaws et. al [38]

Appendix B: Algorithm for Scheme-II

The pertinent steps of the Scheme-II algorithm are listed below:

  1. 1.

    Using the droplet temperature, experimental data and property inputs as listed in Table. 1, the governing equation for droplet velocity is utilized to solve for interface fuel vapor mass fraction \(Y_{Fi}\). Accordingly, Eq. 2 is interpreted as an implicit function of \(Y_{Fi}\) and \(T_i\), as shown below:

    $$\begin{aligned} \frac{du}{dt}+\frac{3 C_D \bar{\rho }_{f}}{4D \rho _l}(u-u_{\infty })^2-g_0\left( 1-\frac{\bar{\rho _f}}{\rho _l}\right) =E(Y_{Fi},T_i)=0. \end{aligned}$$
    (B1)

    The above equation can be solved for unknown interface mass fraction \(Y_{Fi}\), using any standard root finding technique.

  2. 2.

    The interface mass fraction (\(Y_{Fi}\)) is utilized to find the instantaneous vapor pressure of the droplet, which is defined as

    $$\begin{aligned} P_{vap}=P_\infty \left\{ \frac{Y_{Fi} MW_{c}}{MW_F+Y_{Fi}(MW_{c}-MW_F)} \right\}, \end{aligned}$$
    (B2)

    where MW is the molecular weight of carrier gas (subscript ’c’) and fuel (subscript ’F’).

  3. 3.

    Using the interface mass fraction and temperature, the mass balance equation Eq. 5 is solved for the unknown film diffusion coefficient \(\bar{\chi }_{fc}\), which is expressed as:

    $$\begin{aligned} \bar{\chi }_{fc}=\frac{\dot{m}_l}{\pi \bar{\rho }_f{D} {\text {Sh}}^* ln(1+B_M)} .\end{aligned}$$
    (B3)
  4. 4.

    The above steps are repeated for experiments with different carrier gas temperature. The resulting equilibrium droplet temperature for each experiment and vapor pressure, evaluated from the Step.1 , are employed to find the Antoine constants (AB, & C) for the tested liquid, by fitting Antoine equation to the experimental data, expressed as,

    $$\begin{aligned} \log _{10} \left( P_{vap} \right) =A-\dfrac{B}{(C+T_i-273)}. \end{aligned}$$
    (B4)
  5. 5.

    Using the Antoine constants in Antoine equation Eq. B4, the boiling point (\(T_{boil}\)) of the tested liquid can be determined. Also, HOV can be determined by using the differential form of Clausius–Clapeyron equation, given by Eqn. B5, instead of Eqn. 10, which can improve the accuracy of HOV predictions.

    $$\begin{aligned} \dfrac{dP_{vap}}{dT}=\dfrac{P_{vap} H_F MW_F}{T^2 R_u}. \end{aligned}$$
    (B5)
  6. 6.

    The predicted diffusion coefficients, for each experiment, is used to evaluate the Lennard–Jones parameters, using the following empirical definition for diffusion coefficient, based on the work of Wilke and Lee  [45].

    $$\begin{aligned} \bar{\chi }_{fc}=\frac{[3.03-(0.98/{MW}^{0.5}_{fc})] (10^{-7}) \bar{T}^{3/2}_{f}}{P_{\infty }({MW}^{0.5}_{fc})\sigma ^2_{fc}\Omega _D}, \end{aligned}$$
    (B6)

    where

    $$\begin{aligned} MW_{fc}&=2\left[ \frac{1}{MW_F}+\frac{1}{MW_c}\right] ^{-1}\\ \sigma _{fc}&=\frac{(\sigma _c+\sigma _F)}{2}.\\ \end{aligned}$$

    The subscript ’c’ represents the carrier gas and ’F’ represents the fuel vapor. \(\Omega _d\) represents the collision integral, in terms of Lennard–Jones parameters (\(\sigma\), \(\epsilon\)), given by:

    $$\begin{aligned} \Omega _d=\frac{A}{(T^*)^B}+\frac{C}{\text {exp}(DT^*)}+\frac{E}{\text {exp}(FT^*)}+\frac{G}{\text {exp}(HT^*)}, \end{aligned}$$
    (B7)

    where

    $$\begin{aligned} T^*=k_bT/\epsilon _{fc}&A=1.06036&B=0.15610 \\ C=0.19300&D=0.47635&E=1.03587 \\ F=1.52996&G=1.76474&H=3.89411 \\ \epsilon _{fc}=\left( \epsilon _c \epsilon _F \right) ^{0.5}&&\\ \end{aligned}$$

    The two Lennard–Jones potential (\(\sigma , \epsilon\)) parameters are evaluated by non-linear fitting of Eq. B6 on the diffusion coefficient predictions obtained from Step. 6 of the current algorithm. Using the Boiling point \(T_{boil}\) evaluated in Step. 1 of the present algorithm, based on the work of Wilke and Lee  [45], the Lennard–Jones energy parameter can be defined as \(\dfrac{\epsilon }{k_b}=1.15~T_{boil}\). Using this definition for \(\dfrac{\epsilon }{k_b}\), the diffusion coefficient equation Eq. B6 can be used only to evaluate the Lennard–Jones length (\(\sigma\)), which is observed to improve the prediction accuracy.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, W., Gurunadhan, M., Ard, W. et al. Droplet Evaporation-Based Approach for Microliter Fuel Property Measurements. Int J Thermophys 43, 58 (2022). https://doi.org/10.1007/s10765-022-02987-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-02987-1

Keywords

  • Abramzon–Sirignano model
  • Diffusion coefficient
  • Droplet evaporation
  • Heat of vaporization
  • Lennard–Jones parameters
  • Vapor pressure