Skip to main content
Log in

Role of Liquid Nitrogen Cooling State in Physical and Tensile Properties of Sandstone

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The permeability of tight sandstone gas reservoirs can be improved using liquid nitrogen (LN2) cryogenic fracturing. To evaluate the effect of the LN2-cooling state on the tensile failure behaviors of the sandstone, a series of physical and mechanical experiments on the sandstone specimens subjected to different LN2 cooling treatments are performed. Compared to the untreated sandstone, the P-wave velocity, tensile strength, and splitting modulus of the frozen sandstone increase by 42.02%, 63.32%, and 22.80%, respectively, while those of the freeze–thaw sandstone decrease by 2.77%, 23.10%, and 11.92%, respectively. After the LN2 cooling treatment, a considerable number of defects inside the sandstone are produced. The fracture energy among all parameters is most sensitive to the LN2 cooling state. After the LN2 cooling treatment, the total fracture length of the sandstone specimens after the frozen and freeze–thaw treatments increases by 29.79% and 37.46%, respectively. The damage degree of the internal structure induced by the LN2 cooling treatment mainly determines the failure mode of the sandstone. The greater the internal structure damage, the more complex the failure pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. P. Hou, S.J. Su, X. Liang, F. Gao, C.Z. Cai, Y.G. Yang, Z.Z. Zhang, Eng. Fract. Mech. 258, 108066 (2021)

    Article  Google Scholar 

  2. S.A. Holditch, J. Pet. Technol. 55, 34–79 (2021)

    Article  Google Scholar 

  3. P. Hou, X. Liang, F. Gao, J.B. Dong, J. He, Y. Xue, J. Nat. Gas Sci. Eng. 89, 103867 (2021)

    Article  Google Scholar 

  4. S. Gehne, P.M. Benson, Sci. Rep. 9, 12573 (2019)

    Article  ADS  Google Scholar 

  5. X. Liang, P. Hou, Y. Xue, X.J. Yang, F. Gao, J. Liu, Fractals 29, 2150189 (2021)

    Article  ADS  Google Scholar 

  6. P. Hou, F. Gao, Y.N. Gao, Y.G. Yang, C.Z. Cai, Int. J. Rock Mech. Min. 109, 84–90 (2018)

    Article  Google Scholar 

  7. P. Hou, X. Liang, Y. Zhang, J. He, F. Gao, J. Liu, Nat. Resour. Res. 30, 2463–2481 (2021)

    Article  Google Scholar 

  8. B.C. Gordalla, U. Ewers, F.H. Frimmel, Environ. Earth Sci. 70, 3875–3893 (2013)

    Article  Google Scholar 

  9. W.L. Lin, A.M. Bergquist, K. Mohanty, C.J. Werth, A.C.S. Sustain, Chem. Eng. 6, 7515–7524 (2018)

    Google Scholar 

  10. L. Qin, P. Wang, S.G. Li, H.F. Lin, P.C. Zhao, C. Ma, E.H. Yang, Energy Fuel 35, 1404–1413 (2021)

    Article  Google Scholar 

  11. L. Qin, C. Ma, S.G. Li, H.F. Lin, P. Wang, H. Long, D.J. Yan, Fuel 309 (2022)

  12. L. Qin, P. Wang, S.G. Li, H.F. Lin, R.Z. Wang, P. Wang, C. Ma, Fuel 292 (2021)

  13. S. Coetzee, H.W.J.P. Neomagus, J.R. Bunt, C.A. Strydom, H.H. Schobert, Fuel 136, 79–88 (2014)

    Article  Google Scholar 

  14. S.J. Su, F. Gao, C.Z. Cai, M.L. Du, Z.K. Wang, J. Nat. Gas Sci. Eng. 83 (2020)

  15. L. Qin, C. Zhai, J.Z. Xu, S.M. Liu, C. Zhong, G.Q. Yu, J. Pet. Sci. Eng. 175, 129–139 (2019)

    Article  Google Scholar 

  16. L. Qin, C. Zhai, S.M. Liu, J.Z. Xu, Int. J. Heat Mass Transf. 118, 1231–1242 (2018)

    Article  Google Scholar 

  17. H. Yan, L.P. Tian, R.M. Feng, H. Mitri, J.Z. Chen, K. He, Y. Zhang, S.C. Yang, Z.J. Xu, Sci. Total Environ. 721 (2020)

  18. P. Hou, Y. Xue, F. Gao, F. Dou, S. Su, C.Z. Cai, C.H. Zhu, Int. J. Rock Mech. Min. Sci. 151, 105026 (2022)

    Article  Google Scholar 

  19. A.A. Mahesar, M. Ali, A.M. Shar, K.R. Memon, U.S. Mohanty, H. Akhondzadeh, A.H. Tunio, S. Iglauer, A. Keshavarz, Energy Fuels 34, 14548–14559 (2020)

    Article  Google Scholar 

  20. A.A. Mahesar, A.M. Shar, M. Ali, A.H. Tunio, M.A. Uqailli, U.S. Mohanty, H. Akhondzadeh, S. Iglauer, A. Keshavarz, J. Pet. Sci. Eng. 192 (2020)

  21. S.M. Liu, X.L. Li, D.K. Wang, D.M. Zhang, Nat. Resour. Res. 30, 1467–1480 (2021)

    Article  Google Scholar 

  22. S.M. Liu, X.L. Li, D.K. Wang, Arab. J. Geosci. 13, 1–10 (2020)

    Article  Google Scholar 

  23. C.Z. Cai, F. Gao, Y.G. Yang, Energy Explor. Exploit. 36, 1609–1628 (2018)

    Article  Google Scholar 

  24. M.L. Du, F. Gao, C.Z. Cai, S.J. Su, Z.K. Wang, J. Nat. Gas Sci. Eng. 81, 103436 (2020)

    Article  Google Scholar 

  25. V.J. Garcia, C.O. Marquez, A.R. Zuniga-Suarez, B.C. Zuniga-Torres, L.J. Villalta-Granda, Int. J. Concr. Struct. Mater. 11, 343–363 (2017)

    Article  Google Scholar 

  26. M.A. Kassab, A. Weller, Egypt. J. Pet. 28, 1–11 (2015)

    Google Scholar 

  27. S. Garia, A.K. Pal, K. Ravi, A.M. Nair, J. Pet. Explor. Prod. Technol. 9, 1869–1881 (2019)

    Article  Google Scholar 

  28. D. Draebing, M. Krautblatter, Cryosphere 6, 1163–1174 (2012)

    Article  ADS  Google Scholar 

  29. X.G. Wu, Z.W. Huang, H.Y. Song, S.K. Zhang, Z. Cheng, R. Li, H.T. Wen, P.P. Huang, X.W. Dai, Rock Mech. Rock Eng. 52, 2123–2139 (2019)

    Article  Google Scholar 

  30. X.G. Wu, Z.W. Huang, S.K. Zhang, Z. Cheng, R. Li, H.Y. Song, H.T. Wen, P.P. Huang, Rock Mech. Rock Eng. 52, 2585–2603 (2019)

    Article  ADS  Google Scholar 

  31. J.P. Mcgreevy, W.B. Whalley, Arct. Antarct. Alp. Res. 17, 337–346 (1985)

    Article  Google Scholar 

  32. T. Sandstrom, K. Fridh, M. Emborg, M. Hassanzadeh, Nord. Concr. Res. 45, 45–58 (2012)

    Google Scholar 

  33. Z.K. Zhao, T. Wang, X. Jin, Y. Zhang, Adv. Mater. Sci. Eng. 2019, 1237105 (2019)

    Google Scholar 

  34. C. Xia, Z. Lv, Q. Li, J. Huang, X. Bai, Cold Reg. Sci. Technol. 152, 48–58 (2018)

    Article  Google Scholar 

  35. S. Wang, Q. Wang, P. An, Y. Yang, J. Qi, F. Liu, Geomech. Eng. 17, 133–143 (2019)

    Google Scholar 

  36. P. Hou, G.Q. Chen, S.J. Su, Y.G. Yang, C.C. Cai, S.C. Wang, J.R. Qiu, F. Gao, Energy Fuels (2021). https://doi.org/10.1021/acs.energyfuels.1c03738

    Article  Google Scholar 

  37. K. Peng, H. Lv, Q.L. Zou, Z.J. Wen, Y.J. Zhang, Eng. Fract. Mech. 239, 107306 (2020)

    Article  Google Scholar 

  38. X. Liang, P. Hou, X.J. Yang, Y. Xue, T. Teng, F. Gao, J. Liu, Fractals (2021). https://doi.org/10.1142/S0218348X22500116

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported by the National Natural Science Foundation of China (Nos. 52078477 and 51827901), and Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization (2020-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Hou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Hou, P., Su, S. et al. Role of Liquid Nitrogen Cooling State in Physical and Tensile Properties of Sandstone. Int J Thermophys 43, 52 (2022). https://doi.org/10.1007/s10765-022-02981-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-02981-7

Keywords

Navigation