Skip to main content

Determination of Density, Viscosity, and Saturated Vapor Pressure of Various Itaconic Acid Esters

Abstract

Due to the growing consumption and depletion of fossil resources, researchers are forced to find alternative bio-based resources to produce fine chemicals. Itaconic acid esters represent an exciting group of substances that could be potentially used in several areas of the chemical industry, such as a replacement of widely used acrylates in the dye industry. Basic properties, such as density, viscosity, and saturated vapor pressure, are crucial for producing these compounds, same as process simulations. Several properties of various itaconates with commercial use were studied in this paper. The presented data were experimentally determined and compared to the previously published data. The data were subsequently fitted by a relevant model for each property in Aspen Plus simulation software, and the conformity between the experimental and calculated data was determined by values of average absolute deviation. The basic knowledge about these physical–chemical properties will be helpful in future process simulations and development in esters production.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

IA:

Itaconic acid

DMITA:

Dimethyl itaconate

DEITA:

Diethyl itaconate

DPITA:

Di-n-propyl itaconate

DIPITA:

bis(Isopropyl) itaconate

DBITA:

Di-n-butyl itaconate

MeOH:

Methanol

EtOH:

Ethanol

1-PrOH:

1-Propanol

2-PrOH:

2-Propanol

BuOH:

Butanol

GC–MS:

Gas chromatography-mass spectrometry

GC-TCD:

Gas chromatography with a thermal-conductivity detector

MAD:

Mean absolute deviation

AAD:

Average absolute deviation

References

  1. T. Werpy, G. Petersen, Top Value Added Chemicals from Biomass (the Pacific Northwest National Library and the National Renewable Energy Laboratory, 2004). https://www.nrel.gov/docs/fy04osti/35523.pdf Accessed 23 January 2021

  2. B. Cornils, P. Lappe, in Ullmann’s Encyclopedia of Industrial Chemistry (Wiley-VCH Verlag GmbH & Co. KGaA, Weinhein, 2014)

    Google Scholar 

  3. J.T. Trotta, A. Watts, A.R. Wong, A.M. LaPointe, M.A. Hillmyer, B.P. Fors, ACS Sustainable Chem. Eng. 7, 2691 (2019)

    Article  Google Scholar 

  4. B.C. Saha, G.J. Kennedy, N. Qureshi, M.J. Bowman, Biotechnol. Prog. 33, 1059 (2017)

    Article  Google Scholar 

  5. J.C. De Carvalho, A.I. Magalhaes Jr., Soccol C. R. Chim. Oggi 36, 56 (2018)

    Google Scholar 

  6. T. Klement, J. Buechs, Bioresour. Technol. 135, 422 (2013)

    Article  Google Scholar 

  7. A. Kuenz, Y. Gallenmueller, T. Willke, K.-D. Vorlop, Appl. Microbiol. Biotechnol. 96, 1209 (2012)

    Article  Google Scholar 

  8. W.E. Levinson, C.P. Kurtzman, T.M. Kuo, Enzyme Microb. Technol. 39, 824 (2006)

    Article  Google Scholar 

  9. N. Maassen, M. Panakova, N. Wierckx, E. Geiser, M. Zimmermann, M. Boelker, U. Klinner, L.M. Blank, Eng. Life Sci. 14, 129 (2014)

    Article  Google Scholar 

  10. X. Huang, X. Lu, Y. Li, X. Li, J.-J. Li, Microb. Cell Fact. 13, 1191 (2014)

    Google Scholar 

  11. Y. Liu, G. Liu, J. Zhang, V. Balan, J. Bao, Biomass Convers. Biorefin. 10, 463 (2020)

    Article  Google Scholar 

  12. M. Furukawa, Y. Eguchi, JP61255662A, (1986)

  13. W. Lei, H. Qiao, X. Zhou, W. Wang, L. Zhang, R. Wang, K.-C. Hua, Sci. China: Chem. 59, 1376 (2016)

    Article  Google Scholar 

  14. L. Zhang, W. Lei, R. Wang, X. Zhou, H. Qiao, Q. Zhang, CN105968259A (2016)

  15. N. Kaiya, N. Amaya, T. Murata, J. Shigehara, A. Yamada, JP03292332A (1991)

  16. T. Yano, R. Okada, T. Matsuo, WO2019003342A1 (2019)

  17. Y. Huang, W. Zhuang, H. Liu, CN108546412A (2018)

  18. DIPPR Project 801 (Design Institute for Physical properties, 2005), https://app.knovel.com/kn/resources/kpDIPPRPF7/toc?b-q=. Accessed 30 January 2021

  19. R. Anschütz, Chem. Ber. 14, 2784 (1881)

    Article  Google Scholar 

  20. M.C. Kloetzel, J. Am. Chem. Soc. 70, 3571 (1948)

    Article  Google Scholar 

  21. C. Knops, Liebigs Ann. 248, 262 (1888)

    Google Scholar 

  22. T. Askarov, Uzb. Khim. Zh. 261, 262 (1967)

    Google Scholar 

  23. K. Auwers, F.J. Eisenlohr, Prakt. Chem. 84, 1 (1911)

    Article  Google Scholar 

  24. E.H. Coulson, G.A.R. Kon, J. Chem. Soc. (1932). https://doi.org/10.1039/jr9320002568

    Article  Google Scholar 

  25. W.H. Perkin, J. Chem. Soc. 53, 561 (1888)

    Article  Google Scholar 

  26. R.W. Stafford, J.F. Shay, R. Francel, J. Anal. Chem. 26, 656 (1954)

    Article  Google Scholar 

  27. A. Askarov, L.S. Semenova, U. K. Zh 11, 42 (1967)

    Google Scholar 

  28. C.J. Knuth, P.F. Bruins, Ind. Eng. Chem. 47, 1572 (1955)

    Article  Google Scholar 

  29. V. Satta, M.L. Fein, E.M. Filachione, J. Am. Chem. Soc. 75, 4101 (1953)

    Article  Google Scholar 

  30. R. Anschütz, Chem. Ber. 38, 690 (1905)

    Article  Google Scholar 

  31. A. Borisow et al., Nauchni trudove na Visshiia meditsinski institut. Sofiia 7, 25 (1974)

    Google Scholar 

  32. N. El Ghandour, J. Soulier, Bull. Soc. Chim. Fr. 6, 2290 (1971)

  33. B. P. Gusev, E. A. El'perina, V. F. Kucherov, S. D. Pirozhkov, A. L. Lapidus, I. Akad. Nauk SSSR, Ser. Khim. 3, 603 (1980)

  34. M. Sakai, Bull. Chem. Soc. Jpn 50, 1232 (1977)

    Article  Google Scholar 

  35. M. Sakai, S.J. Nishikawa, H. Koike, Y. Sakakibara, N. Uchino, Bull. Chem. Soc. Jpn. 51, 2970 (1978)

    Article  Google Scholar 

  36. P. Ferraboschi, S. Casati, P. Grisenti, E. Santaniello, Tetrahedron 50, 3251 (1994)

    Article  Google Scholar 

  37. R. Fittig, L. Batt, K. Bock, H. Salomon, G. Wernher, Liebigs Ann. 331, 151 (1904)

    Article  Google Scholar 

  38. C.K. Ingold, C.W. Shoppee, J.F. Thorpe, J. Chem. Soc. 129, 1477 (1926)

    Article  Google Scholar 

  39. J.D. Park, F.E. Rogers, J. Korean Chem. Soc. 16, 178 (1972)

    Google Scholar 

  40. R. Queignec, B. Kirschleger, F. Lambert, M. Aboutaj, Synth. Commun. 18, 1213 (1988)

    Article  Google Scholar 

  41. K. Stosius, E. Philippi, Monatsh Chem Verw Teile Anderer Wiss 45, 457 (1924)

    Article  Google Scholar 

  42. S.H. Suh, G. Hite, J. Pharm. Sci. 60, 930 (1971)

    Article  Google Scholar 

  43. T. Susuki, J. Tsuji, Bull. Chem. Soc. Jpn 41, 1954 (1968)

    Article  Google Scholar 

  44. I. Omae, S. Matsuda, S. Kikkawa, R. Sato, J. Soc. Chem. Ind. Jpn 70, 705 (1967)

    Google Scholar 

  45. O. Tsuge, S. Kanemasa, S. Kuraoka, S. Takenaka, Chem. Lett. 13, 281 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all authors.

Corresponding author

Correspondence to Tomáš Sommer.

Ethics declarations

Competing interest

The authors declare no competing financial interests.

Ethical Approval

All authors have approved the final version of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 448 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Trejbal, J., Zapletal, M., Obuchov, A. et al. Determination of Density, Viscosity, and Saturated Vapor Pressure of Various Itaconic Acid Esters. Int J Thermophys 43, 51 (2022). https://doi.org/10.1007/s10765-022-02975-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-02975-5

Keywords

  • Biomass
  • Density
  • Itaconic acid ester
  • Vapor pressure
  • Viscosity