Skip to main content
Log in

Enhancement of Pool Boiling Heat Transfer Performance of R-134a on Microporous Al@GNPs Composite Coatings

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Pool boiling has been widely employed in electronic, power production and refrigeration systems due to its high efficiency in heat transfer. However, the investigation and application of microporous Al matrix composite coatings to enhance the pool boiling heat transfer (BHT) are very limited. In this study, graphene nanoplatelets reinforced Al matrix (Al@GNPs) composite coatings are fabricated by combining mechanical milling, screen printing and sintering techniques to investigate the pool boiling heat transfer using R-134 as working fluid. The experimental data were obtained at a saturation temperature of 10 °C for heat fluxes ranging from 9.04 kW·m−2 to 73.57 kW·m−2. The effect of various coating thicknesses on boiling characteristics and heat transfer coefficient (HTC) of R-134a were studied and presented in detail. Our results demonstrate that the HTC obtained for Al@GNPs-4 composite coated heating surface is 143% higher than the plain Al heating surface. Enhanced nucleation sites and increased bubble pumping action are the main reasons for the augmented BHT performance on the Al@GNPs composite coated heating surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A :

Area (m2)

Q :

Power input (W)

I :

Current (A)

V :

Voltage (V)

h :

Heat transfer coefficient (W·m−2·K−1)

D :

Diameter (mm)

h ER :

Enhancement ratio

K :

Thermal conductivity (W·m−1·K−1)

T :

Temperature (K)

C p :

Specific heat (kJ·kg−1·K−1)

M :

Molecular weight, (g·mol−1)

q :

Heat flux (W·m−2)

P:

Pressure (kPa)

R a :

Average surface roughness (μm)

C :

Numerical constant

wt% :

Weight percentage

\(\Delta\) :

Difference/prefix of uncertainty

\(\sigma\) :

Surface tension (N·m−1)

\(\mu\) :

Viscosity (kg·m−1·s−1)

\(\vartheta\) :

Kinematic viscosity, (m2·s−1)

\(\uprho\) :

Density (kg·m−3)

Al :

Aluminum

l :

Liquid

n :

Number

R :

Refrigerant

ref :

Reference

sat :

Saturation

r :

Reduced

s :

Surface

v :

Vapor

cal :

Calculated

exp :

Experimental

References

  1. E.I. Eid, R.A. Khalaf-Allah, M. Tolan, Int. J. Refrig. 98, 311 (2019)

    Article  Google Scholar 

  2. B.D. Bock, M. Bucci, C.N. Markides, J.R. Thome, J.P. Meyer, Int. J. Heat Mass Transf. 162, 120387 (2020)

    Article  Google Scholar 

  3. D.E. Kim, D.I. Yu, D.W. Jerng, M.H. Kim, H.S. Ahn, Exp. Therm. Fluid Sci. 66, 173 (2015)

    Article  Google Scholar 

  4. A.S. Katarkar, A.D. Pingale, S.U. Belgamwar, S. Bhaumik, Int. J. Thermophys. 42, 124 (2021)

    Article  ADS  Google Scholar 

  5. A.S. Katarkar, A.D. Pingale, S.U. Belgamwar, S. Bhaumik, J. Heat Transfer 143, 121601 (2021)

    Article  Google Scholar 

  6. B. Shen, T. Hamazaki, K. Kamiya, S. Hidaka, K. Takahashi, Y. Takata, J. Nunomura, A. Fukatsu, Y. Betsuki, Int. J. Multiph. Flow 142, 103739 (2021)

    Article  Google Scholar 

  7. H. Moghadasi, H. Saffari, Int. J. Mech. Sci. 196, 106270 (2021)

    Article  Google Scholar 

  8. A.S. Katarkar, B. Majumder, A.D. Pingale, S.U. Belgamwar, S. Bhaumik, Mater. Today Proc. 44, 362 (2021)

    Article  Google Scholar 

  9. S.B. Memory, D.C. Sugiyama, P.J. Marto, Int. J. Heat Mass Transf. 38, 1347 (1995)

    Article  Google Scholar 

  10. A.M. Rishi, S.G. Kandlikar, S.A. Rozati, A. Gupta, Adv. Eng. Mater. 22, 1901562 (2020)

    Article  Google Scholar 

  11. B. Karunagaran, R.T. Rajendra Kumar, V. Senthil Kumar, D. Mangalaraj, S.K. Narayandass, G. Mohan Rao, Mater. Sci. Semicond. Process. 6, 547 (2003)

    Article  Google Scholar 

  12. H. Seo, H.D. Yun, S.-Y. Kwon, I.C. Bang, Nano Lett. 16, 932 (2016)

    Article  ADS  Google Scholar 

  13. B. Saha, N.S. Das, K.K. Chattopadhyay, Thin Solid Films 562, 37 (2014)

    Article  ADS  Google Scholar 

  14. G. Liang, I. Mudawar, Int. J. Heat Mass Transf. 128, 892 (2019)

    Article  Google Scholar 

  15. Y. Takata, S. Hidaka, M. Masuda, T. Ito, Int. J. Energy Res. 27, 111 (2003)

    Article  Google Scholar 

  16. A. Jaikumar, A. Rishi, A. Gupta, S.G. Kandlikar, J. Heat Transfer 139, 111509 (2017)

    Article  Google Scholar 

  17. Q. Li, Z. Lan, J. Chun, R. Wen, X. Ma, Int. J. Heat Mass Transf. 177, 121513 (2021)

    Article  Google Scholar 

  18. J.C. Godinez, D. Fadda, J. Lee, S.M. You, Int. J. Heat Mass Transf. 132, 772 (2019)

    Article  Google Scholar 

  19. J.C. Godinez, H. Cho, D. Fadda, J. Lee, S.J. Park, S.M. You, Int. J. Therm. Sci. 165, 106929 (2021)

    Article  Google Scholar 

  20. M. Kostecki, J. Woźniak, T. Cygan, M. Petrus, A. Olszyna, Materials (Basel). 10, 928 (2017)

    Article  Google Scholar 

  21. B. Akgul, F. Erden, S. Ozbay, Powder Technol. 391, 11 (2021)

    Article  Google Scholar 

  22. S. Lakra, T.K. Bandyopadhyay, S. Das, K. Das, Mater. Res. Bull. 144, 111515 (2021)

    Article  Google Scholar 

  23. A.D. Pingale, S.U. Belgamwar, J.S. Rathore, Mater. Sci. Eng. B 260, 114643 (2020)

    Article  Google Scholar 

  24. A.D. Pingale, A. Owhal, A.S. Katarkar, S.U. Belgamwar, J.S. Rathore, Mater. Today Proc. 44, 467 (2021)

    Article  Google Scholar 

  25. A.K. Dewangan, A. Kumar, R. Kumar, Heat Transf. Eng. 40, 1249 (2019)

    Article  ADS  Google Scholar 

  26. A. Sethi, E. Vera Becerra, S. Yana Motta, Int. J. Refrig. 66, 64 (2016)

    Article  Google Scholar 

  27. A. Kumar, C.-C. Wang, Appl. Therm. Eng. 201, 117779 (2022)

    Article  Google Scholar 

  28. L. Lin, M.A. Kedzierski, Int. J. Heat Mass Transf. 131, 1279 (2019)

    Article  Google Scholar 

  29. A.K. Dewangan, A. Kumar, R. Kumar, Int. J. Therm. Sci. 110, 304 (2016)

    Article  Google Scholar 

  30. R. R. Schultz and R. Cole, in AIChE Symp Ser (AIChE, 1979), pp. 32–38.

  31. D. Gorenflo, VDI-Verlag, Dusseldorf, Ger. (1993).

  32. M. G. Cooper, in First U.K. Natl. Conf. Heat Transf. (Elsevier, 1984), pp. 785–793.

  33. H. Li, J. Sun, J. Zang, N. Su, X. Feng, Y. Shen, Surf. Coatings Technol. 405, 126554 (2021)

    Article  Google Scholar 

  34. S.K. Pradhan, M.R. Sahoo, S. Ratha, B. Polai, A. Mitra, B. Sathpathy, A. Sahu, S. Kar, P.V. Satyam, P.M. Ajayan, S.K. Nayak, AIP Adv. 10, 065016 (2020)

    Article  ADS  Google Scholar 

  35. C.-H. Jeon, Y.-H. Jeong, J.-J. Seo, H.N. Tien, S.-T. Hong, Y.-J. Yum, S.-H. Hur, K.-J. Lee, Int. J. Precis. Eng. Manuf. 15, 1235 (2014)

    Article  Google Scholar 

  36. L. Zhang, G. Hou, W. Zhai, Q. Ai, J. Feng, L. Zhang, P. Si, L. Ci, J. Alloys Compd. 748, 854 (2018)

    Article  Google Scholar 

  37. S. Das, D.S. Kumar, S. Bhaumik, Appl. Therm. Eng. 96, 555 (2016)

    Article  Google Scholar 

  38. N. Sezer, S.A. Khan, M. Koç, Int. J. Heat Mass Transf. 145, 118732 (2019)

    Article  Google Scholar 

  39. M. Ray, S. Bhaumik, Heat Transf. Eng. 40, 997 (2019)

    Article  ADS  Google Scholar 

  40. M. Ray, S. Deb, S. Bhaumik, Mater. Today Proc. 4, 10002 (2017)

    Article  Google Scholar 

  41. H.S. Ahn, N. Sinha, M. Zhang, D. Banerjee, S. Fang, R.H. Baughman, J. Heat Transfer 128, 1335 (2006)

    Article  Google Scholar 

  42. Z. Cao, Z. Wu, S. Abbood, B. Sundén, Energy Procedia 158, 5880 (2019)

    Article  Google Scholar 

  43. A. Joseph, S. Mohan, C.S. Sujith Kumar, A. Mathew, S. Thomas, B.R. Vishnu, S.P. Sivapirakasam, Exp. Therm. Fluid Sci. 103, 37 (2019)

    Article  Google Scholar 

  44. A. Jaikumar, S.G. Kandlikar, A. Gupta, Heat Transf. Eng. 38, 1274 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was conducted in the DST- FIST (SR/FST/ETI- 391/2015(c)) sponsored Phase Change Heat Transfer Laboratory under the Mechanical Engineering Department in the National Institute of Technology Agartala (NIT Agartala), India, in association with Mechanical Engineering Department in Birla Institute of Technology and Science, Pilani (BITS Pilani), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajit Majumder.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumder, B., Pingale, A.D., Katarkar, A.S. et al. Enhancement of Pool Boiling Heat Transfer Performance of R-134a on Microporous Al@GNPs Composite Coatings. Int J Thermophys 43, 49 (2022). https://doi.org/10.1007/s10765-022-02973-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-02973-7

Keywords

Navigation