Skip to main content
Log in

Numerical Simulation and Experimental Research for Thermal Conductivity Measurements of Bulk Materials Based on A Frequency-Domain Hot-Strip Sensor

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Numerical simulations and experimental study of the 3ω method to measure the thermal conductivity of bulk materials were presented with a nickel strip covered with Kapton films on both sides. Consequently, the conditions (i.e., sample geometry, the thickness of Kapton film, and frequency range) could be predicted when conventional analytical formulas were used to determine the thermal conductivity of bulk material from the data measured. At last, the thermal conductivities of stainless steel 304, quartz glass, and PMMA at room temperature were measured to confirm the validity and accuracy of the numerical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. D. Cahill, Rev. Sci. Instrum. 61, 802 (1990). https://doi.org/10.1063/1.1141498

    Article  ADS  Google Scholar 

  2. A. Filatova-Zalewska, Z. Litwicki, T. Suski, A. Jeżowski, Solid State Sci. 101, 106105 (2020). https://doi.org/10.1016/j.solidstatesciences.2019.106105

    Article  Google Scholar 

  3. J.H. Kwak, J.G. Kang, H.-S. Yang, E.D. Jeong, H.G. Kim, K.-S. Hong, Thin Solid Films 641, 34 (2017). https://doi.org/10.1016/j.tsf.2017.02.013

    Article  ADS  Google Scholar 

  4. M. Bogner, A. Hofer, G. Benstetter, H. Gruber, R.Y.Q. Fu, Thin Solid Films 591, 267 (2015). https://doi.org/10.1016/j.tsf.2015.03.031

    Article  ADS  Google Scholar 

  5. M.L. Bauer, C.M. Bauer, M.C. Fish, R.E. Matthews, G.T. Garner, A.W. Litchenberger, P.M. Norris, J. Non-Cryst. Solids 357(15), 2960 (2011). https://doi.org/10.1016/j.jnoncrysol.2011.03.042

    Article  ADS  Google Scholar 

  6. G.I. Athanasopoulos, E. Svoukis, M. Pervolaraki, R. Saint-Martin, A. Revcolevschi, J. Giapintzakis, Thin Solid Films 518(16), 4684 (2010). https://doi.org/10.1016/j.tsf.2009.12.059

    Article  ADS  Google Scholar 

  7. S. Ahmed, R. Liske, T. Wunderer, M. Leonhardt, R. Ziervogel, C. Fansler, T. Grotjohn, J. Asmussen, T. Schuelke, Diam. Relat. Mater. 15(2), 389 (2006). https://doi.org/10.1016/j.diamond.2005.08.041

    Article  ADS  Google Scholar 

  8. C.E. Raudzis, F. Schatz, D. Wharam, J. Appl. Phys. 93(10), 6050 (2003). https://doi.org/10.1063/1.1569663

    Article  ADS  Google Scholar 

  9. D. Cahill, H. Fischer, T. Klitsner, E. Swartz, R. Pohl, J. Vacu. Sci. Technol. A 7, 1259 (1989). https://doi.org/10.1116/1.576265

    Article  ADS  Google Scholar 

  10. S.M. Lee, D.G. Cahill, R. Venkatasubramanian, Appl. Phys. Lett. 70, 2957 (1997). https://doi.org/10.1063/1.118755

    Article  ADS  Google Scholar 

  11. Z.L. Wang, D.W. Tang, S. Liu, X.H. Zheng, N. Araki, Int. J. Thermophys. 28(4), 1255 (2007). https://doi.org/10.1007/s10765-007-0254-3

    Article  ADS  Google Scholar 

  12. D.-W. Oh, A. Jain, J.K. Eaton, K.E. Goodson, J.S. Lee, Int. J. Heat Fluid Flow 29(5), 1456 (2008). https://doi.org/10.1016/j.ijheatfluidflow.2008.04.007

    Article  Google Scholar 

  13. X. Zhang, G. Meng, Z. Wang, Int. J. Heat Mass Transf. 147, 118971 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2019.118971

    Article  Google Scholar 

  14. C. Xing, T. Munro, C. Jensen, H. Ban, C.G. Copeland, R.V. Lewis, Mater. Des. 119, 22 (2017). https://doi.org/10.1016/j.matdes.2017.01.057

    Article  Google Scholar 

  15. H.J. Kim, T.H. Kim, W.-J. Lee, Y. Chai, J.W. Kim, Y.J. Jwa, S. Chung, S.J. Kim, E. Sohn, S.M. Lee, K.-Y. Choi, K.H. Kim, Thermochim. Acta 585, 16 (2014). https://doi.org/10.1016/j.tca.2014.03.036

    Article  Google Scholar 

  16. L. Qiu, X.H. Zheng, G.P. Su, D.W. Tang, Int. J. Thermophys. 34, 2261 (2013). https://doi.org/10.1007/s10765-011-1075-y

    Article  ADS  Google Scholar 

  17. L. Qiu, X.H. Zheng, P. Yue, J. Zhu, D.W. Tang, Y.J. Dong, Y.L. Peng, Int. J. Therm. Sci. 89, 185 (2015). https://doi.org/10.1016/j.ijthermalsci.2014.11.005

    Article  Google Scholar 

  18. L. Qiu, Y. Ouyang, Y. Feng, X. Zhang, X. Wang, Int. J. Heat Mass Transf. 163, 120550 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.120550

    Article  Google Scholar 

  19. Q. Kong, L. Qiu, Y.D. Lim, C.W. Tan, K. Liang, C. Lu, B.K. Tay, Surf. Coat. Technol. 345, 105 (2018). https://doi.org/10.1016/j.surfcoat.2018.03.090

    Article  Google Scholar 

  20. W. Chen, L. Qiu, S. Liang, X. Zheng, D. Tang, Thermochim. Acta 560, 1 (2013). https://doi.org/10.1016/j.tca.2013.02.020

    Article  Google Scholar 

  21. X. Zheng, Y. Peng, L. Shen, W. Liang, Y. Xiao, H. Chen, Review of entific Instruments 89(8), 084904 (2018). https://doi.org/10.1063/1.5035107

    Article  ADS  Google Scholar 

  22. W. Liu, L. Zhang, A. Moridi, Coatings (2019). https://doi.org/10.3390/coatings9020087

    Article  Google Scholar 

  23. A. Jacquot, B. Lenoir, A. Dauscher, M. Stlzer, J. Meusel, J. Appl. Phys. 91(7), 4733 (2002). https://doi.org/10.1063/1.1459611

    Article  ADS  Google Scholar 

  24. M.C. Wingert, A.Z. Zhao, Y. Kodera, S.J. Obrey, J.E. Garay, Rev. Sci. Instrum. 91(5), 054904 (2020). https://doi.org/10.1063/1.5138915

    Article  ADS  Google Scholar 

  25. O.A. Sergeev, A.G. Shashkov, A.S. Umanskii, J. Eng. Phys. 43(6), 1375 (1982). https://doi.org/10.1007/BF00824797

    Article  Google Scholar 

  26. M.J. Assael, K. Gialou, K. Kakosimos, I. Metaxa, Int. J. Thermophys. 25(2), 397 (2004). https://doi.org/10.1023/B:IJOT.0000028477.74595.d5

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor J. T. Wu of School of Energy and Power Engineering, Xi’an Jiaotong University, for supporting the experimental system. This work is supported by the Hebei Province Key Research and Development Project (Grant No. 21374501D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangjiang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Lu, S., Yan, P. et al. Numerical Simulation and Experimental Research for Thermal Conductivity Measurements of Bulk Materials Based on A Frequency-Domain Hot-Strip Sensor. Int J Thermophys 43, 48 (2022). https://doi.org/10.1007/s10765-021-02972-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02972-0

Keywords

Navigation