Skip to main content
Log in

Experimental Study of Thermal Performance of a Newly Designed Pulsating Heat Pipe with Fe3O4 Nanofluid-Exposed Magnetic Field and Corrugated Evaporator

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Use of oscillating heat pipes as a new component related to heat transfer has always been of interest for different technologies in recent years. A novel U-shaped structure is designed for the 3D-PHPs and this novel design creates a high performance device. In this experimental study, the thermal performance of a newly designed three-dimensional pulsating heat pipe with Fe3O4 nanofluid exposed to magnetic field under different heat inputs (0 W to 450 W). The results showed that the filling ratio of 50 % had better thermal performance. Our results indicated that the use of iron oxide nanofluid (Fe3O4) at 2 % mass concentration significantly improves the thermal performance of the pulsating heat pipe especially in 50 % filling ratio compared to pure water, which also showed that the improvement of heat transfer coefficient can be better by using corrugated evaporator under magnetic field. The results show that when the evaporator of 3D-PHP is exposed to a constant magnetic field, the thermal performance of the device improves significantly. The results showed that thermal resistance has been reduced 18 %, 20 %, and 25 %, respectively, for nanofluid with 50 % filling ratio and corrugated evaporator and under magnetic field compared to water. Compared to pure water operating fluid, application of nanofluid, magnetic field, and corrugated evaporator reduces the average heat resistance and increases the heat transfer coefficient. This investigation will promote the development of effective cooling for electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A:

Area (m2)

B:

Magnetic flux density (Tesla or Gauss)

D:

Diameter (mm)

I:

Electric current (A)

\(q^{\prime\prime}\) :

Heat flux (W·m2)

q:

Heating power (W)

h:

Heat transfer coefficient (W·m2·K1)

L:

Length (m)

T:

Temperature (°C)

R:

Thermal resistance (°C·W1)

V:

Voltage (V)

Ŋ:

Efficiency (%)

Δ:

Uncertainty

ρ:

Density (kg·m3)

FR:

Filling ratio

PHP:

Pulsating heat pipe

ad:

Adiabatic

c:

Condenser

e:

Evaporator

i:

Inner

in:

Input

out:

Output

sat:

Saturation

References

  1. Akachi H, United States Patent: 4921041—Structure of a Heat Pipe (1990)

  2. C. Wilson, B. Borgmeyer, R.A. Winholtz, H.B. Ma, D.L. Jacobson, D.S. Hussey, Visual observation of oscillating heat pipes using neutron radiography. J. Thermophys. Heat Transf. 22, 366–372 (2008). https://doi.org/10.3390/app6110321

    Article  Google Scholar 

  3. S. Khandekar, P. Charoensawan, M. Groll, P. Terdtoon, Closed loop pulsating heat pipes. Part B: visualization and semi-empirical modeling. Appl. Therm. Eng. 23, 2021–2033 (2003). https://doi.org/10.1016/S1359-4311(03)00168-6

    Article  Google Scholar 

  4. H.B. Ma, B. Borgmeyer, P. Cheng, Y. Zhang, Heat transport capability in an oscillating heat pipe. J. Heat Transf. 130, 081501–081507 (2008). https://doi.org/10.1186/1556-276X-6-296

    Article  Google Scholar 

  5. S. Rittidech, P. Terdtoon, M. Murakami, P. Kamonpet, W. Jompakdee, Correlation to predict heat transfer characteristics of a closed-end oscillating heat pipe at normal operating condition. Appl. Therm. Eng. 23, 497–510 (2003). https://doi.org/10.1016/S1359-4311(02)00215-6

    Article  Google Scholar 

  6. W. Qu, H. Ma, Theoretical analysis of startup of a pulsating heat pipe. Int. J. Heat Mass Transf. 50, 2309–2316 (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.043

    Article  MATH  Google Scholar 

  7. Y.Z. Ling, X.S. Zhang, F. Wang, X.H. She, Performance study of phase change materials coupled with three dimensional oscillating heat pipes with different structures for electronic cooling. Renew. Energy 154, 636–649 (2020). https://doi.org/10.1016/j.renene.2020.03.008

    Article  Google Scholar 

  8. C.Y. Tseng, K.S. Yang, C.C. Wang, Non-uniform three-dimensional pulsating heat pipe for anti-gravity high-flux applications. Int. J. Energy. 13, 3068 (2020). https://doi.org/10.3390/en13123068

    Article  Google Scholar 

  9. J. Qu, J. Zhao, Z. Rao, Experimental investigation on the thermal performance of three dimensional oscillating heat pipe. Int. J. Heat Mass Transf. 109, 589–600 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.02.040

    Article  Google Scholar 

  10. Y. He, D. Jiao, G. Pei, X. Hu, L. He, Experimental study on a three-dimensional pulsating heat pipe with tandem tapered nozzles. Exp. Therm. Fluid Sci. (2020). https://doi.org/10.1016/j.expthermflusci.2020.110201

    Article  Google Scholar 

  11. B. Borgmeyer, C. Wilson, R.A. Winholtz, H.B. Ma, D. Jacobson, D. Hussey, Heat transport capability and fluid flow neutron radiography of three-dimensional oscillating heat pipes. J. Heat Transf. 132, 061502–061511 (2010). https://doi.org/10.1115/1.4000750

    Article  Google Scholar 

  12. T. Hao, H. Ma, X. Ma, Heat transfer performance of polytetrafluoroethylene oscillating heat, pipe with water, ethanol, and acetone as working fluids. Int. J. Heat Mass Transf. 131, 109–120 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.133

    Article  Google Scholar 

  13. E. Sadeghinezhad, M. Mehrali, M.A. Rosen, A.R. Akhiani, S.T. Latibari, M. Mehrali, H.C. Metselaar, Experimental investigation of the effect of graphene nanofluids on heat pipe thermal performance. Appl. Therm. Eng. 100, 775–787 (2016). https://doi.org/10.1016/j.applthermaleng.2016.02.071

    Article  Google Scholar 

  14. D. Yin, H. Rajab, H.B. Ma, Theoretical analysis of maximum filling ratio in an oscillating heat pipe. Int. J. Heat Mass Transf. 74, 353–357 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.018

    Article  Google Scholar 

  15. P. Wang, X. Cui, J. Weng, Z. Cai, R. Cai, Experimental investigation of the heat transfer performance of an oscillating heat pipe with LiCl salt solution. Int. J. Heat Mass Transf. 158, 120033 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.120033

    Article  Google Scholar 

  16. H. Peng, P.F. Pai, H. Ma, Nonlinear thermomechanical finite-element modeling, analysis and characterization of multi-turn oscillating heat pipes. Int. J. Heat Mass Transf. 69, 424–437 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2013.10.041

    Article  Google Scholar 

  17. Y. Ji, M. Wu, Y. Feng, C. Yu, L. Chu, C. Chang, Y. Li, X. Xiao, H. Ma, An experimental investigation on the heat transfer performance of a liquid metal high-temperature oscillating heat pipe. Int. J. Heat Mass Transf. 149, 119198 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2019.119198

    Article  Google Scholar 

  18. H.R. Goshayeshi, M. Goodarzi, M.R. Safaei, M. Dahari, Experimental study on the effect of inclination angle on heat transfer enhancement of a ferrofluid in a closed loop oscillating heat pipe under magnetic field. Exp. Therm. Fluid Sci. 74, 265–270 (2016). https://doi.org/10.1016/j.expthermflusci.2016.01.003

    Article  Google Scholar 

  19. T. Yousefi, S. Mousavi, B. Farahbakhsh, M. Saghir, Experimental investigation on the performance of CPU coolers: effect of heat pipe inclination angle and the use of nanofluids. Microelectron. Reliab. 53, 1954–1961 (2013). https://doi.org/10.1016/j.microrel.2013.06.012

    Article  Google Scholar 

  20. S. Yanxi, X. Jinliang, Chaotic behavior of pulsating heat pipes. Int. J. Heat Mass Transf. 52, 2932–2941 (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.030

    Article  Google Scholar 

  21. H.R. Goshayeshi, M.R. Safaei, M. Goodarzi, M. Dahari, Particle size and type effects on heat transfer enhancement of ferro-nanofluids in a pulsating heat pipe. J. Powder Technol. 301, 1218–1226 (2016). https://doi.org/10.1016/j.powtec.2016.08.007

    Article  Google Scholar 

  22. D.A. Reay, P.A. Kew, R.J. McGlen, Chapter 6—Special Types of Heat Pipe, Heat Pipes: Theory, Design and Applications (Butterworth-Heinemann, Oxford, 2014), pp. 135–173

    Google Scholar 

  23. Y. Ji, G. Liu, H. Ma, G. Li, Y. Sun, An experimental investigation of heat transfer performance in a polydimethylsiloxane (PDMS) oscillating heat pipe. Appl. Therm. Eng. 61, 690–697 (2013). https://doi.org/10.1016/j.applthermaleng.2013.09.001

    Article  Google Scholar 

  24. E. Sedighi, A. Amarloo, B. Shafii, Numerical and experimental investigation of flat-plate pulsating heat pipes with extra branches in the evaporator section. Int. J. Heat Mass Transf. 126, 431–441 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.047

    Article  Google Scholar 

  25. H. Yang, S. Khandekar, M. Groll, Performance characteristics of pulsating heat pipes as integral thermal spreaders. Int. J. Therm. Sci. 48, 815–824 (2009). https://doi.org/10.1016/j.ijthermalsci.2008.05.017

    Article  Google Scholar 

  26. R. Senjaya, T. Inoue, Oscillating heat pipe simulation considering bubble generation. Part I: Presentation of the model and effects of a bubble generation. Int. J. Heat Mass Transf. 60, 816–824 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.01.059

    Article  Google Scholar 

  27. H.R. Goshayeshi, I. Chaer, Experimental study and flow visualization of Fe2O3/kerosene in glass oscillating heat pipes. Appl. Therm. Eng. 103, 1213–1218 (2016). https://doi.org/10.1016/j.applthermaleng.2016.04.109

    Article  Google Scholar 

  28. H. Xian, W. Xu, Y. Zhang, X. Du, Y. Yang, Thermal characteristics and flow patterns of oscillating heat pipe with pulse heating. Int. J. Heat Mass Transf. 79, 332–341 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.002

    Article  Google Scholar 

  29. S. Ahangar Zonouzi, R. Khodabandeh, H. Safarzadeh, H. Aminfar, Y. Trushkina, M. Mohammadpourfard, M. Ghanbarpour, A.G. Salazar, Experimental investigation of the flow and heat transfer of magnetic nanofluid in a vertical tube in the presence of magnetic quadrupole field. Exp. Therm. Fluid Sci. 91, 155 (2018). https://doi.org/10.1016/j.expthermflusci.2017.10.013

    Article  Google Scholar 

  30. L. Sha, Y. Ju, H. Zhang, The influence of the magnetic field on the convective heat transfer characteristics of Fe3O4/water nanofluids. Appl. Therm. Eng. 126, 108–116 (2017). https://doi.org/10.1016/j.applthermaleng.2017.07.150

    Article  Google Scholar 

  31. E. Esmaeili, R. Ghazanfar, S.A. Rounagh, The influence of the alternating magnetic field on the convective heat transfer properties of Fe3O4-containing nanofluids through the Neel and Brownian mechanisms. Appl. Therm. Eng. 110, 1212–1219 (2017). https://doi.org/10.1016/j.applthermaleng.2016.09.014

    Article  Google Scholar 

  32. S.W. Kang, Y.C. Wang, Y.C. Liu, H.M. Lo, Visualization and thermal measurement for magnetic nanofluid pulsating heat pipe. Appl. Therm. Eng. 126, 1044–1050 (2017). https://doi.org/10.1016/j.applthermaleng.2017.02.051

    Article  Google Scholar 

  33. H.R. Goshayeshi, Effect of a magnetic field at inclination n angles on the performance of copper oscillating g heat pipes. Int. J. Energy Clean Environ. 16, 1–11 (2015). https://doi.org/10.1615/InterJEnerCleanEnv.2016015686

    Article  Google Scholar 

  34. H. Davari, H.R. Goshayeshi, H.F. Oztop, I. Chaer, Experimental investigation of oscillating heat pipe efficiency for a novel condenser by using Fe3O4 nanofluid. J. Therm. Anal. Calorim. 140, 2605–2614 (2020). https://doi.org/10.1007/s10973-019-09032-8

    Article  Google Scholar 

  35. E. Sadeghinezhad, M. Mehrali, A. Akhiani, D.A. Latibari, H. Simon, C. Metselaar, M. Mehrali, Experimental study on heat transfer augmentation of graphene based ferrofluids in presence of magnetic field. Appl. Therm. Eng. 114, 415–427 (2017). https://doi.org/10.1016/j.applthermaleng.2016.11.199

    Article  Google Scholar 

  36. M. Ashouri, B. Ebrahimi, M.B. Shafii, M.H. Saidi, M.S. Saidi, Correlation for Nusselt number in pure magnetic convection ferrofluid flow in a square cavity by a numerical investigation. Magn. Magn. Mater. 322, 3607–3613 (2010). https://doi.org/10.1016/j.jmmm.2010.05.041

    Article  ADS  Google Scholar 

  37. J. Wang, H. Ma, Q. Zhu, Y. Dong, K. Yue, Numerical and experimental investigation of pulsating heat pipes with corrugated configuration. Appl. Therm. Eng. 102, 158–166 (2016). https://doi.org/10.1016/j.applthermaleng.2016.03.163

    Article  Google Scholar 

  38. M. Mehrali, E. Sadeghinezhad, R. Azizian, A.R. Akhiani, S.T. Latibari, M. Mehrali, H.S.C. Metselaar, Effect of nitrogen-doped graphene nanofluid on the thermal performance of the grooved copper heat pipe. Energy Convers. Manage. 118, 459–473 (2016). https://doi.org/10.1016/j.enconman.2016.04.028

    Article  Google Scholar 

  39. F. Fadaei, M. Shahrokhi, A. Molaei Dehkordi, Z. Abbasi, Heat transfer enhancement of Fe3O4 ferrofluids in the presence of magnetic field. J. Magn. Magn. Mater. 01, 46 (2017). https://doi.org/10.1016/j.jmmm.2017.01.046

    Article  Google Scholar 

  40. N.S. Pandya, A.N. Desai, A.K. Tiwari, Z. Said, Influence of the geometrical parameters and particle concentration levels of hybrid nanofluid on the thermal performance of axial grooved heat pipe. Therm. Sci. Eng. Prog. (2020). https://doi.org/10.1016/j.tsep.2020.100762

    Article  Google Scholar 

  41. J. Wang, G. Li, H. Zhu, J. Luo, B. Sundén, Experimental investigation on convective heat transfer of ferrofluids inside a pipe under various magnet orientations. Int. J. Heat Mass Transf. 132, 407–419 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.023

    Article  Google Scholar 

  42. H.R. Goshayeshi, F. Izadi, K. Bashirnezhad, Comparison of heat transfer performance on closed pulsating heat pipe for Fe3O4 and γFe2O3 for achieving an empirical correlation. Physica E 89, 43–49 (2017). https://doi.org/10.1016/j.physe.2017.01.014

    Article  ADS  Google Scholar 

  43. J. Holman, Heat Transfer, 8th edn. (McGraw-Hill Inc., New York, 2001)

    Google Scholar 

  44. Q. Jie, Z. Jiateng, R. Zhonghao, Experimental investigation on the thermal performance of three dimensional oscillating heat pipe. Int. J. Heat Mass Transf. 109, 589–600 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.02.040

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Goshayeshi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alizadeh Jajarm, A.R., Goshayeshi, H.R. & Bashirnezhad, K. Experimental Study of Thermal Performance of a Newly Designed Pulsating Heat Pipe with Fe3O4 Nanofluid-Exposed Magnetic Field and Corrugated Evaporator. Int J Thermophys 43, 40 (2022). https://doi.org/10.1007/s10765-021-02971-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02971-1

Keywords

Navigation