Skip to main content
Log in

Thermal Decomposition of Nickel Salt Hydrates

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The thermal decomposition of NiSO4·6H2O, NiCl2·6H2O, and Ni(SO3NH2)2·xH2O was investigated in 50–1200 °C range by simultaneous thermogravimetry (TG) and differential scanning calorimetry (DSC) in flowing air. The solid products of the decomposed salts were identified by X-ray diffraction (XRD) analysis. The nickel salt hydrates first dehydrate in 100–350 °C, followed by decomposition into nickel oxide and gaseous species. The decomposition temperatures of the anhydrous NiSO4, NiCl2, and Ni(SO3NH2)2 are, respectively, 810 °C, 740 °C, 375–797 °C. The enthalpies for decomposition of the anhydrous salts, determined from the DSC curve, are 93.50 kJ·mol−1, 14.55 kJ·mol−1, and 26.67–56.15 kJ·mol−1for NiSO4, NiCl2, and Ni(SO3NH2)2, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E.R. Hwang, S.G. Kang, J. Power Sources. 76, 48 (1998)

    Article  ADS  Google Scholar 

  2. F.D. Wall, M.A. Martinez, J.J. Vandenavyle, Microsys. Technol. 11, 319 (2005)

    Article  Google Scholar 

  3. A. Mukhopadhyay, S. Sahoo, Eng. Res. Express 1, 015021 (2019)

    Article  ADS  Google Scholar 

  4. M.R.J. Meymian, A. Ghaffarinejad, R. Fazli, A.K. Mehr, Colloids Surf. A. Physicochem. Eng. Asp. 593, 124617 (2020)

    Article  Google Scholar 

  5. M.K. King, M.K. Mahapatra, S N Appl. Sci. 2, 716 (2020)

    Article  Google Scholar 

  6. M.K. King, M.K. Mahapatra, Oxid. Metals. 94, 359 (2020)

    Article  Google Scholar 

  7. M.K. King, M.K. Mahapatra, J. Mater. Res. 36, 322 (2021)

    Article  ADS  Google Scholar 

  8. A. George, D. Bari, in Modern Electroplating. ed. by M. Schlesinger, M. Paunovic (Wiley, New Jersey, 2010), p. 79

    Google Scholar 

  9. D. Oloruntoba, O. Eghwubare, O. Oluwole, J. Pract. Technol. 18, 79 (2011)

    Google Scholar 

  10. M. Saitou, S. Oshiro, S.M.A. Hossain, J. Appl. Electrochem. 38, 309 (2007)

    Article  Google Scholar 

  11. I. Gurrappa, L. Binder, Sci. Technol. Adv. Mater. 9, 1 (2008)

    Google Scholar 

  12. Z. Jamil, E. Ruiz-Trejo, N.P. Brandon, J. Electrochem. Soc. 164, D210 (2017)

    Article  Google Scholar 

  13. R. Oriňáková, A. Turoňová, D. Kladeková, M. Gálová, R.M. Smith, J. Appl. Electrochem. 36, 957 (2006)

    Article  Google Scholar 

  14. S. Sengupta, A. Patra, S. Jena, K. Das, S. Das, Metall. Mater. Trans. A. 49, 920 (2018)

    Article  Google Scholar 

  15. M.S. Kim, J.Y. Kim, C.K. Kim, N.K. Kim, Chemosphere 58, 459 (2005)

    Article  ADS  Google Scholar 

  16. H.R.P. Cardoso, T. Falcade, S.R. Kunst, C.F. Malfatti, Mater. Res. 18, 292 (2015)

    Article  Google Scholar 

  17. D. Goranova, G. Avdeev, R. Rashkov, Surf. Coat. Technol. 240, 204 (2014)

    Article  Google Scholar 

  18. M.R. Vaezi, S.K. Sadrnezhaad, L. Nikzad, Colloids. Surf. A. Physicochem. Eng. Asp. 315, 176 (2008)

    Article  Google Scholar 

  19. B. Haflan, P. Kofstad, Corr. Sci. 23, 1333 (1983)

    Article  Google Scholar 

  20. H.J.S. Grabke, M. Spiegel, A. Zahs, Mater. Res. 7, 89 (2004)

    Article  Google Scholar 

  21. X. Zheng, R.A. Rapp, Oxid. Metals. 48, 527 (1997)

    Article  Google Scholar 

  22. P. Prescott, F.H. Stott, P. Elliott, Corr. Sci. 29, 465 (1989)

    Article  Google Scholar 

  23. A. Jalowicka, W. Nowak, D. Naumenko, L. Singheiser, W.J. Quadakkers, Mater. Corr. 65, 178 (2014)

    Google Scholar 

  24. F.H. Stott, R. Prescott, P. Elliott, M.H.J.H. AľAtia, High. Temp. Technol. 6, 115 (1988)

    Article  Google Scholar 

  25. K. Tjokro, D.J. Young, R. Johansson, B. Ivarsson, J. Phys. IV. 3, 357 (1993)

    Google Scholar 

  26. E. Tomaszewicz, M. Kotfica, J. Therm. Anal. Calorim. 77, 25 (2004)

    Article  Google Scholar 

  27. S.K. Mishra, S.B. Kanungo, J. Therm. Anal. 38, 2417 (1992)

    Article  Google Scholar 

  28. ASTM International, ASTM E1269–11, 1–5 (2018)

    Google Scholar 

  29. M. Wagner, in Thermal Analysis, in Practice: Fundamental Aspects. ed. by M. Wagner (Hanser, Ohio, 2018), pp. 66–143

    Google Scholar 

  30. F. Tian, H. Qu, A. Zimmermann, T. Munk, A.C. Jørgensen, J. Rantanen, J. Pharm. Pharmacol. 62, 1534 (2010)

    Article  Google Scholar 

  31. J.A. Dean, In Lange’s Handbook of Chemistry, 15th edn. (McGraw-Hill Inc., New York, 1999), pp. 1–1561

    Google Scholar 

Download references

Acknowledgements

Support from the NASA Alabama Space Grant Consortium (ASGC) (Grant Number: NNX15AJ18H) for conducting the research is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj K. Mahapatra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

King, M.K., Mahapatra, M.K. Thermal Decomposition of Nickel Salt Hydrates. Int J Thermophys 43, 32 (2022). https://doi.org/10.1007/s10765-021-02960-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02960-4

Keywords

Navigation