Skip to main content

Advertisement

Log in

Thermal Properties of Natural Graphite Flake Enhanced Phase Change Material from ‘T-History’ Method

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Growing interest has been on augmenting thermal transport properties of phase change materials (PCM) using additives at micro/nano—metric scale. Thermal characterization of PCMs becomes essential for effective design of cool thermal energy storage systems. In this work, latent heat and specific heat of water dispersed with natural graphite flake (NGF) are determined from ‘T-History’ method, derived from actual mass of PCM. Results of enthalpy of fusion from ‘T-History’ and differential scanning calorimetry analysis of reference PCM are compared with standard data, exhibiting a deviation of 0.5 % and 24.5 %, respectively. For water dispersed with NGF called micro-particle enhanced PCM (MePCM), a shortened solidification duration results to a reduction of enthalpy by 13 % at 3 wt. %. Using lumped heat analysis, the specific heat of MePCMs is evaluated and analyzed. Further, increase in pressure inside the capsule should be taken into consideration while optimizing the mass fraction of NGF. In summary, the proposed method simplifies thermal characterization of MePCMs in an economical manner, also alleviating discrepancies in thermophysical properties, due to sample size and cooling rate in other measurement methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

i:

Initial

in:

Inner

LH:

Latent heat

MePCM:

Micro particle enhanced phase change material

Ref PCM:

Reference phase change material

ref:

Reference temperature

RTD:

Resistance temperature detector

SLC:

Sensible liquid cooling

sph:

Spherical capsule

SSC:

Sensible solid cooling

sub:

Subcooled

w:

Water

A :

Area (m2)

\({\uprho }\) :

Density (kg·m3)

\(\Delta {\text{h}}\) :

Enthalpy of fusion (kJ·kg1)

\(r*\) :

Freeze front or solid–liquid interface radius

Q:

Heat stored (kJ)

h:

Heat transfer coefficient (W·m2 K1)

\(\phi\) :

Particles volume concentration

\({\text{c}}\) :

Specific heat (kJ·kg1 K1)

\(T\) :

Temperature (K)

\(t\) :

Time (s)

References

  1. A. Henry, R. Prasher, A. Majumdar, Nat. Energy 5, 635 (2020). https://doi.org/10.1038/s41560-020-0675-9.

  2. M.M. Farid, A.M. Khudhair, S.A.K. Razack, S. Al-Hallaj, Energy Convers. Manag. 45, 1597 (2004). https://doi.org/10.1016/j.enconman.2003.09.015

    Article  Google Scholar 

  3. E. Günther, S. Hiebler, H. Mehling, R. Redlich, Int. J. Thermophys. 30, 1257 (2009). https://doi.org/10.1007/s10765-009-0641-z

    Article  ADS  Google Scholar 

  4. G.S. Kumar, D. Nagarajan, L.A. Chidambaram, V. Kumaresan, Y. Ding, R. Velraj, Energy 115, 1168 (2016). https://doi.org/10.1016/j.energy.2016.09.014

    Article  Google Scholar 

  5. V. Kumaresan, K.S. Raghavan, M.P. Vikram, J. Iyyappan, Fuller. Nanotub. Carbon Nanostruct. 29, 890 (2021). https://doi.org/10.1080/1536383X.2021.1910811

    Article  ADS  Google Scholar 

  6. Z. Yinping, J. Yi, J. Yi, Meas. Sci. Technol. 10, 201 (1999)

    Article  ADS  Google Scholar 

  7. J.H. Peck, J.-J. Kim, C. Kang, H. Hong, Int. J. Refrig. 29, 1225 (2006). https://doi.org/10.1016/j.ijrefrig.2005.12.014

    Article  Google Scholar 

  8. H. Hong, S.K. Kim, Y.-S. Kim, Int. J. Refrig. 27, 360 (2004). https://doi.org/10.1016/j.ijrefrig.2003.12.006

    Article  Google Scholar 

  9. Y. Li, Y. Zhang, M. Li, D. Zhang, Exp. Therm. Fluid Sci. 44, 697 (2013). https://doi.org/10.1016/j.expthermflusci.2012.09.010

    Article  Google Scholar 

  10. S.B. Stanković, P.A. Kyriacou, Appl. Energy 109, 433 (2013). https://doi.org/10.1016/j.apenergy.2013.01.079

    Article  Google Scholar 

  11. T. Xu, S.N. Gunasekara, J.N. Chiu, B. Palm, S. Sawalha, Appl. Energy 261, 114432 (2020). https://doi.org/10.1016/j.apenergy.2019.114432

    Article  Google Scholar 

  12. N. Radhakrishnan, S. Thomas, C.B. Sobhan, J. Therm. Anal. Calorim. 140, 2471 (2020). https://doi.org/10.1007/s10973-019-08976-1

    Article  Google Scholar 

  13. K.P. Venkitaraj, S. Suresh, Mech. Mater. 128, 64 (2019). https://doi.org/10.1016/j.mechmat.2018.10.004

    Article  Google Scholar 

  14. W. Li, Y. Dong, J. Wang, Y. Zhang, X. Zhang, X. Liu, Phase Transit. 92, 1 (2019). https://doi.org/10.1080/01411594.2019.1574010

    Article  Google Scholar 

  15. C. Yadav, R. Rekhasahoo, Powder Technol. (2020). https://doi.org/10.1016/j.powtec.2020.02.008

    Article  Google Scholar 

  16. H. Badenhorst, L.F. Cabeza, Thermochim. Acta 650, 95 (2017). https://doi.org/10.1016/j.tca.2017.02.005

    Article  Google Scholar 

  17. A. Solé, L. Miró, C. Barreneche, I. Martorell, L.F. Cabeza, Renew. Sustain. Energy Rev. 26, 425 (2013). https://doi.org/10.1016/j.rser.2013.05.066

    Article  Google Scholar 

  18. M. Bergler, K. Cvecek, F. Werr, M. Brehl, D. De Ligny, M. Schmidt, Int. J. Extreme Manuf. 2, 035001 (2020). https://doi.org/10.1088/2631-7990/ab9583

    Article  Google Scholar 

  19. Y. Huang, D. Wu, D. Zhao, F. Niu, G. Ma, Int. J. Extreme Manuf. 3, 035101 (2021). https://doi.org/10.1088/2631-7990/abf71a

    Article  Google Scholar 

  20. D.R. Lide, Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 2004)

    Google Scholar 

  21. F.S. Ham, Appl. Phys. 30, 1518 (1959). https://doi.org/10.1063/1.1734993

    Article  Google Scholar 

  22. T. Ranjith, A. Sathishkumar, IOP Conf. Ser. 912, 042040 (2020). https://doi.org/10.1088/1757-899X/912/4/042040

    Article  Google Scholar 

  23. T.P. Teng, S.P. Yu, T.C. Hsiao, C.C. Chung, J. Nanomater. 2018, 8230120 (2018). https://doi.org/10.1155/2018/8230120

    Article  Google Scholar 

  24. T.P. Teng, T.C. Hsiao, C.C. Chung, Materials (2018). https://doi.org/10.3390/ma11081315

    Article  Google Scholar 

  25. P. Namburu, D. Kulkarni, A. Dandekar, D. Das, Micro. Nano Lett. 2, 67 (2007). https://doi.org/10.1049/mnl:20070037

    Article  Google Scholar 

  26. D.P. Kulkarni, R.S. Vajjha, D.K. Das, D. Oliva, Appl. Energy 28, 1774 (2008). https://doi.org/10.1016/j.applthermaleng.2007.11.017

    Article  Google Scholar 

  27. R.S. Vajjha, D.K. Das, J. Heat Transf. (2009). https://doi.org/10.1115/1.3090813

    Article  Google Scholar 

  28. I.C. Nelson, D. Banerjee, R. Ponnappan, Int. J. Thermophys. 23, 752 (2009). https://doi.org/10.2514/1.31033

    Article  Google Scholar 

  29. B. Jo, D. Banerjee, J. Heat Transf. (2015). https://doi.org/10.1115/1.4030226

    Article  Google Scholar 

  30. I.W. Eames, K.T. Adref, Appl. Therm. Eng. 22, 733 (2002). https://doi.org/10.1016/S1359-4311(02)00026-1

    Article  Google Scholar 

  31. B.C. Pak, Y.I. Cho, Exp. Heat Transf. 11, 151 (1998). https://doi.org/10.1080/08916159808946559

    Article  ADS  Google Scholar 

  32. J.J. Sobczak, L. Drenchev, R. Asthana, Int. J. Cast Met. Res. 25, 1 (2012). https://doi.org/10.1179/1743133611Y.0000000016

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Technology Mission Division (Grant No. DST/TMD/MES/2K16/98), Department of Science and Technology, New Delhi, Government of India and Center for Research, Anna University, Chennai.

Funding

Funding was provided by Department of Science and Technology, Ministry of Science and Technology (Grant Number DST/TMD/MES/2K16/98) and Center for Research, Anna University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Kumaresan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raghavan, K.S., Kumaresan, V. Thermal Properties of Natural Graphite Flake Enhanced Phase Change Material from ‘T-History’ Method. Int J Thermophys 43, 39 (2022). https://doi.org/10.1007/s10765-021-02957-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02957-z

Keywords

Navigation