Skip to main content
Log in

Absorptivity Control Over the Visible to Mid-Infrared Range Using a Multilayered Film Consisting of Thermochromic Vanadium Dioxide

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Vanadium dioxide (VO2) is a phase transition material that exhibits metallic or insulating characteristics depending upon its temperature. In this study, a multilayered film consisting of VO2, silicon dioxide (SiO2) and gold was proposed as a metamaterial that switches its absorptivity over a broad wavelength range depending on the ambient temperature as a fundamental element of a building pigment. At high temperatures, the multilayer showed a high absorptivity at mid-infrared wavelengths, promoting radiative cooling. Simultaneously, the multilayer presented a low absorptivity in the visible and near-infrared wavelengths, enhancing sunlight absorption. The daily average heat flux can possibly be suppressed in summer in comparison with a gray body whose emissivity was 0.8. Conversely, at a lower temperatures, the multilayer showed opposite absorptivity in both the mid-infrared and visible ranges, and its daily average heat flux increased in winter. The metal–insulator phase transition of VO2 caused a drastic shift of the resonant wavelength related to surface phonons and surface plasmons at an infrared wavelength, and optical interference at a visible wavelength, originating at the interface of the SiO2 layer. Thus, the radiative heat flux for both sunlight absorption and radiative cooling was simultaneously controlled depending on the temperature of VO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.A. Gueymard, Sol. Energy 71, 325 (2001)

    Article  ADS  Google Scholar 

  2. A. Synnefa, M. Santamouris, K. Apostolakis, Sol. Energy 81, 488 (2007)

    Article  ADS  Google Scholar 

  3. J. Lv, M. Tang, R. Quan, Z. Chai, Ceram. Int. 45, 15768 (2019)

    Article  Google Scholar 

  4. G.B. Smith, A. Gentle, P. Swift, A. Earp, N. Mronga, Sol. Energy Mater. Sol. Cells 79, 163 (2003)

    Article  Google Scholar 

  5. I.P. Parkin, T.D. Manning, J. Chem. Educ. 83, 393 (2006)

    Article  Google Scholar 

  6. N. Wang, S. Magdassi, D. Mandler, Y. Long, Thin Solid Films 534, 594 (2013)

    Article  ADS  Google Scholar 

  7. M.E.A. Warwick, R. Binions, J. Mater. Chem. A 2, 3275 (2014)

    Article  Google Scholar 

  8. R. Zhang, B. Xiang, M. Feng, Y. Xu, L. Xu, L. Xia, J. Mater. Sci. 55, 10689 (2020)

    Article  ADS  Google Scholar 

  9. Y. Muraoka, Y. Ueda, Z. Hiroi, J. Phys. Chem. Solids 63, 965 (2002)

    Article  ADS  Google Scholar 

  10. M. Currie, M.A. Mastro, V.D. Wheeler, Opt. Mater. Express 7, 1697 (2017)

    Article  ADS  Google Scholar 

  11. A. Ueno, J. Kim, H. Nagano, Int. J. Heat Mass Transf. 166, 120631 (2021)

    Article  Google Scholar 

  12. M.J. Dicken, K. Aydin, I.M. Pryce, L.A. Sweatlock, E.M. Boyd, S. Walavalkar, J. Ma, H.A. Atwater, Opt. Express 17, 18330 (2009)

    Article  ADS  Google Scholar 

  13. S. Wang, K.A. Owusu, L. Mai, Y. Ke, Y. Zhou, P. Hu, S. Magdassi, Y. Long, Appl. Energy 211, 200 (2018)

    Article  Google Scholar 

  14. Y. Dachuan, X. Niankan, Z. Jingyu, Z. Xiulin, J. Phys. D. Appl. Phys. 29, 1051 (1996)

    Article  ADS  Google Scholar 

  15. Y. Zhang, S. Qiao, L. Sun, Q.W. Shi, W. Huang, L. Li, Z. Yang, Opt. Express 22, 11070 (2014)

    Article  ADS  Google Scholar 

  16. S. Chen, H. Ma, J. Dai, X. Yi, Appl. Phys. Lett. 90, 101117 (2007)

    Article  ADS  Google Scholar 

  17. M.A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, F. Capasso, Phys. Rev. X 3, 041004 (2013)

    Google Scholar 

  18. H. Kocer, S. Butun, B. Banar, K. Wang, S. Tongay, J. Wu, K. Aydin, Appl. Phys. Lett. 106, 161104 (2015)

    Article  ADS  Google Scholar 

  19. K. Sun, C.A. Riedel, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C.H. de Groot, O.L. Muskens, ACS Photonics 5, 2280 (2018)

    Article  Google Scholar 

  20. L. Long, S. Taylor, X. Ying, L. Wang, Mater. Today. Energy 13, 214 (2019)

    Google Scholar 

  21. K. Ito, T. Watari, K. Nishikawa, H. Yoshimoto, H. Iizuka, APL Photonics 3, 086101 (2018)

    Article  ADS  Google Scholar 

  22. R.L. Voti, M.C. Larciprete, G. Leahu, C. Sibilia, M. Bertolotti, J. Appl. Phys. 112, 085305 (2012)

    Article  Google Scholar 

  23. T. Chang, X. Cao, L.R. Dedon, S. Long, A. Huang, Z. Shao, N. Li, H. Luo, P. Jin, Nano Energy 44, 256 (2018)

    Article  ADS  Google Scholar 

  24. V.G. Golubev, V.Y. Davydov, N.F. Kartenko, D.A. Kurdyukov, A.V. Medvedev, A.B. Pevtsov, A.V. Scherbakov, E.B. Shadrin, Appl. Phys. Lett. 79, 2127 (2001)

    Article  ADS  Google Scholar 

  25. A. Raman, M.A. Anoma, L. Zhu, E. Rephaeli, S. Fan, Nature 515, 540 (2014)

    Article  ADS  Google Scholar 

  26. E. Rephaeli, A. Raman, S. Fan, Nano Lett. 13, 1457 (2013)

    Article  ADS  Google Scholar 

  27. T. Liu, J. Takahara, Opt. Express 25, A612 (2017)

    Article  ADS  Google Scholar 

  28. J. Kou, Z. Jurado, Z. Chen, S. Fan, A.J. Minnich, ACS Photonics 4, 626 (2017)

    Article  Google Scholar 

  29. B.J. Lee, L. Wang, Z.M. Zhang, Opt. Express 16, 11328 (2008)

    Article  ADS  Google Scholar 

  30. R. Feng, J. Qiu, L. Liu, W. Ding, L. Chen, Opt. Express 22, A1713 (2014)

    Article  ADS  Google Scholar 

  31. A. Sakurai, B. Zhao, Z.M. Zhang, J. Quant. Spectrosc. Radiat. Transf. 149, 33 (2014)

    Article  ADS  Google Scholar 

  32. X. Han, K. He, Z. He, Z. Zhang, Opt. Express 25, A1072 (2017)

    Article  ADS  Google Scholar 

  33. K. Isobe, R. Okino, K. Hanamura, Opt. Express 28, 40099 (2020)

    Article  ADS  Google Scholar 

  34. S. Shen, A. Narayanaswamy, G. Chen, Nano Lett. 9, 2909 (2009)

    Article  ADS  Google Scholar 

  35. A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. (Artech House on Demand, New York, 2005)

    MATH  Google Scholar 

  36. A. Taflove, A. Oskooi, S.G. Johnson, Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology (Artech, Norwood, 2013)

    Google Scholar 

  37. A.F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J.D. Joannopoulos, S.G. Johnson, Comput. Phys. Commun. 181, 687 (2010)

    Article  ADS  Google Scholar 

  38. R. Siegel, J.R. Howell, Thermal Radiation Heat Transfer, 2nd edn. (Hemisphere Publishing Corporation, New York, 1981)

    Google Scholar 

  39. E.D. Palik, Handbook of Optical Constants of Solids, vol. 1 (Academic Press, San Diego, 1985)

    Google Scholar 

  40. P.J. Van Zwol, K. Joulain, P. Ben-Abdallah, J. Chevrier, Phys. Rev. B. 84, 1 (2011)

    Google Scholar 

  41. H. Hoshino, K. Okimura, I. Yamaguchi, T. Tsuchiya, Sol. Energy Mater. Sol. Cells 191, 9 (2019)

    Article  Google Scholar 

  42. T. Cesca, C. Scian, E. Petronijevic, G. Leahu, R. Li Voti, G. Cesarini, R. Macaluso, M. Mosca, C. Sibilia, G. Mattei, Nanoscale 12, 851 (2020)

    Article  Google Scholar 

  43. G. Cesarini, G. Leahu, R. Li Voti, C. Sibilia, Infrared Phys. Technol. 93, 112 (2018)

    Article  ADS  Google Scholar 

  44. G. Cesarini, G. Leahu, A. Belardini, M. Centini, R. Li Voti, C. Sibilia, Int. J. Therm. Sci. 146, 106061 (2019)

    Article  Google Scholar 

  45. A.S. Barker, H.W. Verleur, H.J. Guggenheim, Phys. Rev. Lett. 17, 1286 (1966)

    Article  ADS  Google Scholar 

  46. N. Engheta, Science 317, 1698 (2007)

    Article  ADS  Google Scholar 

  47. L. Wang, Z.M. Zhang, Opt. Express 19, A126 (2011)

    Article  ADS  Google Scholar 

  48. M. Francoeur, M.P. Mengüç, R. Vaillon, J. Quant. Spectrosc. Radiat. Transf. 110, 2002 (2009)

    Article  ADS  Google Scholar 

  49. E.N. Economou, Phys. Rev. 182, 539 (1969)

    Article  ADS  Google Scholar 

  50. A. Sakurai, K. Yada, T. Simomura, S. Ju, M. Kashiwagi, H. Okada, T. Nagao, K. Tsuda, J. Shiomi, A.C.S. Cent, Science 5, 319 (2019)

    Google Scholar 

  51. H. Wang, L. Wang, J. Quant. Spectrosc. Radiat. Transf. 158, 127 (2015)

    Article  ADS  Google Scholar 

  52. Japan Meteorological Agency, (2021). https://www.data.jma.go.jp/obd/stats/etrn/index.php. Accessed 21 March 2021.

  53. Z.J. Ye, C.F. Ma, S.Y. Huang, J. Therm. Sci. 5, 128 (1996)

    Article  ADS  Google Scholar 

  54. N.P. Avdelidis, A. Moropoulou, Energy Build. 35, 663 (2003)

    Article  Google Scholar 

  55. S. Kotthaus, T.E.L. Smith, M.J. Wooster, C.S.B. Grimmond, ISPRS J. Photogramm. Remote Sens. 94, 194 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant in Aide for Research Activity Start-up (Number: 20K22394).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuma Isobe.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isobe, K., Tomioka, M., Yamada, Y. et al. Absorptivity Control Over the Visible to Mid-Infrared Range Using a Multilayered Film Consisting of Thermochromic Vanadium Dioxide. Int J Thermophys 43, 44 (2022). https://doi.org/10.1007/s10765-021-02944-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02944-4

Keywords

Navigation