Skip to main content

Advertisement

Log in

Measurement and Correlation of the Thermal Conductivity of 1,1,1,2,2,3,3-Heptafluoro-3-methoxypropane (RE-347mcc)

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

New experimental data for the thermal conductivity of 1,1,1,2,2,3,3-heptafluoro-3-methoxypropane (RE-347mcc, HFE-7000) are reported for vapor, liquid, and supercritical states. These new experimental data were obtained with transient hot-wire apparatus over the temperature range from 162.1 K to 500.1 K and at pressures from 0.04 MPa to 69.41 MPa. These data were used to develop a wide-range correlation for the thermal conductivity of the vapor, liquid, and supercritical fluid states. The experimental data reported here have an uncertainty of 1 % for the liquid and supercritical regions at higher densities (densities > 700 kg·m−3), 1.5 % for vapor and lower-density supercritical regions (pressures ≥ 1 MPa and densities < 200 kg·m−3), 3 % for supercritical states (200 kg·m−3 ≤ densities ≤ 700 kg·m−3), and 3 % for dilute vapor and supercritical states (pressures < 1 MPa). The thermal conductivity correlation developed in this work is estimated to have an expanded relative uncertainty, at a 95 % confidence level, ranging from approximately 1 % to 4.2 % that depends upon the temperature and pressure, with larger uncertainties in the critical region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ö. Hodnebrog, M. Etminan, J.S. Fuglestvedt, G. Marston, G. Myhre, C.J. Nielsen, K.P. Shine, T.J. Wallington, Rev. Geophys. 51, 300 (2013)

    Article  ADS  Google Scholar 

  2. 3M Novec 7000 Engineered Fluid, https://multimedia.3m.com/mws/media/121372O/3m-novec-7000-engineered-fluid-tds.pdf (2018)

  3. Y. Zhou, E.W. Lemmon, to be submitted, J. Phys. Chem. Ref. Data, (2021)

  4. E.W. Lemmon, I.H. Bell, M.L. Huber, M.O. McLinden, REFPROP, Reference Fluid Thermodynamic and Transport Properties, NIST Standard Reference Database 23, Version 10.0, National Institute of Standards and Technology, Gaithersburg, MD, (2018)

  5. X. Hu, X. Meng, K. Wei, W. Li, J. Wu, J. Chem. Eng. Data 60, 3562 (2015)

    Article  Google Scholar 

  6. N. Nakazawa, M. Kawamura, A. Sekiya, K. Ootake, R. Tamai, Y. Kurokawa, J. Murata, Nippon Reito Kyokai Ronbunshu 19, 33 (2002)

    Google Scholar 

  7. M.H. Rausch, L. Kretschmer, S. Will, A. Leipertz, A.P. Froba, J. Chem. Eng. Data 60, 3759 (2015)

    Article  Google Scholar 

  8. S. Matsuo, Y. Tanaka, M. Ohue, N. Takada, H. Yamamoto, A. Sekiya, Rev. High Pressure Sci. Technol. 7, 1189 (1998)

    Article  Google Scholar 

  9. A. Sekiya, S. Misaki, J. Fluorine Chem. 101, 215 (2000)

    Article  Google Scholar 

  10. N. Takada, S. Matsuo, Y. Tanaka, A. Sekiya, J. Fluorine Chem. 91, 81 (1998)

    Article  Google Scholar 

  11. M.L. Huber, Models for the Viscosity, Thermal Conductivity, and Surface Tension of Selected Pure Fluids as Implemented in REFPROP v10.0, National Institute of Standards and Technology, NISTIR 8209, https://doi.org/10.6028/NIST.IR.8209, (2018)

  12. T.J. Bruno, P.D.N. Svoronos, CRC Handbook of Basic Tables for Chemical Analysis, 3rd edn. (Taylor and Francis CRC Press, Boca Raton, FL, 2011)

    Google Scholar 

  13. T.J. Bruno, P.D.N. Svoronos, CRC Handbook of Fundamental Spectroscopic Correlation Charts (Taylor and Francis CRC Press, Boca Raton, FL, 2005)

    Book  Google Scholar 

  14. H.M. Roder, J. Res. Natl. Bur. Stand. 86, 457 (1981)

    Article  Google Scholar 

  15. P.L. Woodfield, J. Fukai, M. Fujii, Y. Takata, K. Shinzato, Int. J. Thermophys. 29, 1278 (2008)

    Article  ADS  Google Scholar 

  16. J.J. Healy, J.J. DeGroot, J. Kestin, Physica 82C, 392 (1976)

    Google Scholar 

  17. M.J. Assael, L. Karagiannidis, S.M. Richardson, W.A. Wakeham, Int. J. Thermophys. 13, 223 (1992)

    Article  ADS  Google Scholar 

  18. B. Taxis, K. Stephan, Int. J. Thermophys. 15, 141 (1994)

    Article  ADS  Google Scholar 

  19. S.F.Y. Li, M. Papadaki, W.A. Wakeham, High Temp. High Press. 25, 451 (1993)

    Google Scholar 

  20. S.F.Y. Li, M. Papadaki, W.A. Wakeham, in Thermal Conductivity 22. ed. by T.W. Tong (Technomic Publishing, Lancaster, PA, 1994), pp. 531–542

    Google Scholar 

  21. H.M. Roder, R.A. Perkins, A. Laesecke, C.A. Nieto de Castro, J. Res. Natl. Inst. Stand. Technol. 105, 221 (2000)

    Article  Google Scholar 

  22. R.A. Perkins, M.L. Huber, M.J. Assael, J. Chem. Eng. Data 63, 2783 (2018)

    Article  Google Scholar 

  23. R.A. Perkins, M.L. Huber, J. Chem. Eng. Data 56, 4868 (2011)

    Article  Google Scholar 

  24. R.A. Perkins, M.L. Huber, M.J. Assael, J. Chem. Eng. Data 62(9), 2659 (2017)

    Article  Google Scholar 

  25. R.A. Perkins, M.L. Huber, Int. J. Thermophys. 41, 103 (2020)

    Article  ADS  Google Scholar 

  26. G.A. Olchowy, J.V. Sengers, Phys. Rev. Lett. 61, 15 (1988)

    Article  ADS  Google Scholar 

  27. G.A. Olchowy, J.V. Sengers, Int. J. Thermophys. 10, 417 (1989)

    Article  ADS  Google Scholar 

  28. R. Krauss, V.C. Weiss, T.A. Edison, J.V. Sengers, K. Stephan, Int. J. Thermophys. 17, 731 (1996)

    Article  ADS  Google Scholar 

  29. R.A. Perkins, J.V. Sengers, I.M. Abdulagatov, M.L. Huber, Int. J. Thermophys. 34, 191 (2013)

    Article  ADS  Google Scholar 

  30. P.T. Boggs, R.H. Byrd, J.E. Rogers, R.B. Schnabel, ODRPACK, Software for Weighted Orthogonal Distance Regression, National Institute of Standards and Technology, Gaithersburg, MD USA, https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nistir4834.pdf, (1992)

Download references

Acknowledgements

We thank Paul Stempko and Dele Fayemi of 3M for the sample of RE-347mcc studied in the present work. We also thank Mark McLinden of NIST for sample preparation that included the freeze–thaw degassing of the sample. Finally, we thank Tom Bruno (retired) and Tara Lovestead of NIST for characterization of the sample purity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Perkins.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Commercial equipment, instruments, or materials are identified only to adequately specify certain procedures. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the identified products are necessarily the best available for the purpose.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 499 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perkins, R.A., Huber, M.L. & Assael, M.J. Measurement and Correlation of the Thermal Conductivity of 1,1,1,2,2,3,3-Heptafluoro-3-methoxypropane (RE-347mcc). Int J Thermophys 43, 12 (2022). https://doi.org/10.1007/s10765-021-02941-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02941-7

Keywords

Navigation