Abstract
Chronopotentiometry and electromotive force methods were used to determine ion transport numbers in two homogeneous and highly selective cation- and anion-exchange membranes. NaCl aqueous solutions of different concentrations, varying from 1 mol·m−3 to 100 mol·m−3 were used to analyze the possible impact of the electrolyte concentration on the results obtained by both methods. Cation transport numbers close to unity for the cation exchange membrane and to zero for the anion-exchange membrane were found for both membrane types with both methods when the NaCl-concentration exceeded 10 mol·m−3. At the lowest concentrations, a systematic deviation from ideal behavior was seen, mainly in the electromotive force method, possibly due to a higher contribution from transport of water. The cation transport number estimated by the electromotive force method was systematically lower than the number obtained from chronopotentiometry, probably due to larger concentration polarization at low electrolyte concentration. We conclude that chronopotentiometry is a relatively rapid and precise technique for ion transport number determination at electrolyte concentrations for which membranes maintain a good selectivity for the measurement conditions used.
Similar content being viewed by others
References
F.G. Helfferich, Ion Exchange (McGraw-Hill, New York, 1962)
T. Luo, S. Abdu, M. Wessling, Selectivity of ion exchange membranes: a review. J. Membr. Sci. 555, 428 (2018)
H. Strathmann, Ion-Exchange Membrane Separation Processes, Membrane Science and Technology Sciences, vol. 9 (Elsevier, Amsterdam, 2004)
Y. Tanaka, Ion-Exchange Membranes, vol. 12, 2nd edn. (Elsevier Science, Amsterdam, 2015)
A. Zlotorowicz, R.V. Strand, O.S. Burheim, O. Wilhelmsen, S. Kjelstrup, The permselective and water transference number of ion exchange membranes in reverse electrolialysis. J. Membr. Sci. 523, 402 (2017)
N. Lakshminarayanaiah, Transport Phenomena in Membranes (Academic Press, New York, 1969)
G.M. Geise, H.J. Cassady, D.R. Paul, B.E. Logan, M.A. Hickner, Specific ion effects on membrane potential and the permselectivity of ion exchange membranes. Phys. Chem. Chem. Phys. 16, 21673 (2014)
C. Larchet, B. Auclair, V. Nikonenko, Approximate evaluation of water transport number in ion-exchange membranes. Electrochim. Acta 49, 1711 (2004)
R.K. Nagarale, V.K. Shahi, S.K. Thampy, R. Rangarajan, Studies on electrochemical characterization of polycarbonate and polysulfone based heterogeneous cation-exchange membranes. React. Funct. Polym. 61, 131 (2004)
R.H. Nagarale, G.S. Gohil, V.K. Shahi, Recent developments of ion-exchange membranes and electro-membrane processes. Adv. Colloid Interface Sci. 119, 97 (2006)
G.S. Gohil, V.V. Binso, V.K. Shahi, Preparation and characterization of mono-valent in exchange polypyrrole composite ion-exchange membranes. J. Membr. Sci. 280, 210 (2006)
A.A. Mansoor, M. Mustakeen, D. Nedela, Study the transport properties of anion and cation exchange membranes toward various ion using chronopotentiometry. Iran J. Chem. Chem. Eng. 36, 81 (2017)
L. Marder, E.M. Ortega Navarro, V. Pérez-Herranz, A.M. Bernardes, J. Zoppas Ferreira, Evaluation of transition metal transport properties through a cation-exchange membrane by chronopotentiometry. J. Membr. Sci. 284, 267 (2006)
V.K. Shashi, R. Prakash, G. Ramachandraiah, R. Rangaranjan, D. Vasudevan, Solution-membrane equilibrium at metal-deposited cation-exchange membranes: chronopotentiometric characterization of metal-modified membranes. J. Colloid Interface Sci. 216, 179 (1999)
A.M. Peers, General discussion. Discuss. Faraday Soc. 21, 124 (1956)
V.V. Nikonenko, A.V. Kovalenko, M.K. Urtenov, N.D. Pismenskaya, Desalination at overlimiting currents: State-of-the-art and perspectives. Desalination 324, 85 (2014)
V.V. Nikonenko, N.D. Pismenskaya, E.I. Belova, P. Sistat, P. Huguet, G. Pourcely, C. Larchet, Intensive current transfer in membrane systems: Modelling, mechanisms and application in electrodialysis. Adv. Colloid Interface Sci. 160, 101 (2010)
E.I. Belova, G.Y. Lopatkova, N.D. Pismenskaya, V.V. Nikonenko, C. Larchet, G. Pourcely, Effect of anion membrane surface properties on mechanisms of overlimiting mass transfer. J. Phys. Chem. B 110, 13458 (2006)
F. Roghmans, E. Evdochenko, F. Stockmeirer, S. Schenider, A. Smaijili, R. Towari, A. Mikosh, E. Kataray, A. Kühne, A. Walther, A. Mani, M. Wessling, 2D patterned ion-exchange membranes induces electroconvection. Adv. Mater. Interfaces 61, 801309 (2019)
V.I. Zabolotsky, V.V. Nikonenko, N.D. Pismesnskaya, E.V. Laktionoiv, M.K. Urtenov, H. Strathmann, M. Wessling, G.H. Koops, Coupled transport phenomena in overlimiting current electrodialysis. Sep. Purif. Technol. 14, 225 (1998)
Y. Tanaka, Water dissociation reaction generated in an ion exchange membrane. J. Membr. Sci. 350, 347 (2010)
H. Strathmann, Chronopotentiometry for the advanced current-voltage characterization of bipolar membranes. J. Electr. Chem. 502, 152 (2001)
M. Taky, G. Pourcelly, C. Gavach, A. Elmidaoui, Chronopotentiometric response of a cation exchange membrane in contact with chromium (III) solutions. Desalination 105, 219 (1996)
J.H. Choi, S.-H. Moon, Pore size characterization of cation-exchange membranes by chronopotentiometry using homologous amine ions. J. Membr. Sci. 191, 225 (2001)
R. Ibañez, D.F. Stamatialis, M. Wessling, Role of membrane surface in concentration polarization at cation exchange membranes. J. Membr. Sci. 239, 119 (2004)
N. Pismenskaia, P. Sissat, P. Huguet, V. Nikonenko, G. Pourcelly, Chronopotentiometry applied to the study of ion transfer through anion exchange membranes. J. Membr. Sci. 228, 65 (2004)
T. Sata, Ion Exchange Membranes: Preparation, Characterization, Modification and Application (Royal Society of Chemistry, Cambridge, 2004)
P. Dugoleçki, B. Anet, S.J. Metz, K. Nijmeijer, M. Wessling, Transport limitation in ion exchange membranes at low salt concentration. J. Membr. Sci. 346, 163 (2010)
C. Larchet, S. Nouri, B. Auclair, L. Dammak, V. Nikonenko, Application of chronopotentiometry to determine the thickness of diffusion layer adjacent to an ion-exchange membrane under natural convection. Adv. Colloid Interface Sci. 139, 45 (2008)
S.A. Mareev, V.S. Nichka, D.Y. Butylskii, M.K. Urtenov, N.D. Pismenskaya, P.Y. Apel, V.V. Nikonenko, Chronopotentiometric response of an electrically heterogeneous permeselective surface: 3D modelling of transition time and experiment. J. Phys. Chem. C 120, 13113 (2016)
Y. Freijanes, V.M. Barragán, S. Muñoz, Chronopotentiometric study of a Nafion membrane in presence of glucose. J. Membr. Sci. 510, 79 (2016)
L. Vobecká, M. Svoboda, J. Benes, T. Bellon, Z. Slouka, Heterogeneity of heterogeneous io-exchange membranes investigated by chronopotentiometry and X-ray computed microtomography. J. Membr. Sci. 559, 127 (2018)
J.J. Krol, M. Wessling, H. Strathmann, Chronopotentiometry and overlimiting ion transport through monopolar ion exchange membranes. J. Membr. Sci. 162, 155 (1999)
M.C.C. Martí-Calatayud, D.C.B. Buzzi, M. García-Gabaldón, A.M.M. Bernardes, J.A.S. Tenório, V. Pérez-Herranz, Ion transport through homogeneous and heterogeneous ion-exchange membranes in single salt and multicomponent electrolyte solutions. J. Membr. Sci. 466, 45 (2014)
L. Marder, E.M. Oretega Navarro, V.O. Pérez-Herranz, A.M. Bernardes, J.Z. Ferreira, Evaluation of transition metals transport properties through a cation-exchange membrane by chronopotentiometry. J. Membr. Sci. 284, 267 (2006)
T. Scarazzato, Z. Panossian, M. García-Gabaldón, E.M. Ortega, J.A.S. Tenório, V. Pérez-Heransa, D.C.R. Spinosa, Evaluation of the transport properties of copper ions through a heterogeneous ion-exchange membrane in etidronic acid solutions by chronopotentiometry. J. Membr. Sci. 535, 268 (2017)
P. Ray, V.K. Shahiu, T.V. Pathak, G. Ramachandraiah, Transport phenomenon as a function of counter and co-ions in solution: chronopotentiometric behaviour of anion exchange membrane in different aqueous electrolyte solutions. J. Membr. Sci. 160, 243 (1999)
S. Koter, C. Güler, I. Koter, Chronopotentiometric characterization of electrodialysis module. Archit. Civ. Eng. Environ. 3, 129 (2016)
M.C. Martí-Calatayud, M. García-Gabaldón, V. Pérez-Herranz, E. Ortega, Determination of transport properties of Ni(II) through a Nafion cation-exchange membrane in chromic acid solutions. J. Membr. Sci. 379, 449 (2011)
G. Váquez-Rodríguez, L.M. Torres-Rodríguez, A. Montes-Rojas, Synthesis and characterization of commercial cation-exchange membranes modified electrochemically by polypyrrole: effect of synthesis conditions on the transport properties. Desalination 416, 94 (2017)
S.A. Mareev, D.Y. Butylskii, A.V. Kovalenko, D.D. Pismenskaya, L. Dammak, C. Larchet, V.V. Nikonenko, Inclusion of the concentration dependence of the diffusion coefficient in the Sand equation. Russ. J. Electrochem. 52, 996 (2016)
G.J. Janz, Silver-silver halide electrodes, in Reference Electrodes. ed. by D.J.G. Ives, G.J. Janz (Academic Press, London, 1961), p. 179
V.M. Barragán, C. Ruiz-Bauzá, Membrane potential and electrolyte permeation in a cation-exchange membrane. J. Membr. Sci. 154, 261 (1999)
C. Ponce-de-León, C.T.J. Low, G. Kear, F.C. Walsh, Strategies for the determination of the convective-diffusion limiting current from steady linear sweep voltametry. J. Appl. Electrochem. 37, 1261 (2007)
V.M. Barragán, C. Ruizá, Current-voltage curves for ion-exchange membranes: a method for determining the limiting current density. J. Colloid Interface Sci. 205, 365 (1998)
X.T. Le, T.H. Bui, P. Viel, T. Berthelot, S. Palcin, On the structure-properties relationship of the AMV anion exchange membrane. J. Membr. Sci. 340, 133 (2009)
L. Gurreri, A. Filingeri, M. Ciofalo, A. Cipollina, M. Tedesco, A. Tamburini, G. Micale, Electrodialysis with a profile geometry on current phenomena. Desalination 506, 115001 (2021)
S.A. Mareev, D.Y. Butylskii, N.D. Pismenskaya, V.V. Nikonenko, Chronopotentiometry of ion-exchange membranes in the overlimiting current range. Transition time for a finite-length diffusion layer: modelling and experiment. J. Membr. Sci. 500, 171 (2016)
D.Y. Butylskii, S.A. Mareev, N.D. Pismenskaya, P.Y. Apel, O.A. Polezhaeva, Phenomenon of two transition times in chronopotentiometry of electrically inhomogeneous ion exchanges membranes. Electrochim. Acta 273, 289 (2018)
S.A. Mareev, A.V. Nebavskiy, V.S. Nichka, M.K. Urtenov, The nature of two transition times on chronopotentiograms of heterogeneous ion exchange membranes: 2D modelling. J. Membr. Sci. 575, 179 (2019)
J. C. Valença, Overlimiting current properties at ion exchange membranes, PhD Thesis Universiteit Twente, 2017
M. van Soestbergen, P.M. Biesheuvel, M.Z. Bazant, Diffuse-charge effects on the transient response of electrochemical cells. Phys. Rev. E 81, 021503 (2010)
S.A. Mareev, D.Y. Butylskii, A.V. Kovalenko, A.V. Petukhova, N.D. Pismenskaya, Accounting for the concentration dependence of electrolyte diffusion coefficient in the Sand and the Peers equations. Electrochim. Acta 195, 85 (2016)
S. Koter, Transport number of counterions in ion-exchange membranes. Sep. Purif. Technol. 22, 643 (2001)
D.Y. Butylskii, E.D. Skolotneva, S.A. Mareev, A.D. Gorobchenko, M.K. Urtenov, Estimation of the equations for calculation of chronopotentiometric transition time in membrane systems. Electrochim. Acta 353, 136595 (2020)
V.M. Barragán, C. Ruiz-Bauzá, J.I. Mengual, On current dependence of the electroosmotic in ion-exchange membranes. J. Membr. Sci. 95, 1 (1994)
V.M. Barragán, C. Ruiz-Bauzá, J.I. Mengual, Effect of unstirred solution layers on electroomotic permeability of cation-exchange membranes. J. Colloid Interface Sci. 168, 458 (1994)
R.A. Robinson, R.H. Stokes, Electrolyte Solutions (Academic Press, New York, 1959)
V.M.M. Lobo, Electrolyte Solutions: Literature Data on Thermodynamics and Transport Properties (Coimbra Editora, Coimbra, 1975)
Acknowledgements
Financial support from Banco de Santander and Universidad Complutense de Madrid under Project PR75/18-21589 is gratefully acknowledged. K.R.K. and S.K. are grateful to Research Council of Norway for project no 262644 PoreLab.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix
Appendix
The electric conductivity of the solutions used in the chronopotentiometry measurements was measured according to the method previously described. From the obtained values, the exact concentration of the prepared solutions can be determined from tabulated values of the electric conductivity \(\sigma\)(S·cm−1) versus concentration c (mol·L−1) for NaCl solutions at 25 ºC [58, 59]. Known the true concentration of each electrolyte solution, the diffusion coefficient D and the transport number of ion sodium in free solution t+ were estimated from tabulated data for the different electrolyte solutions [58, 59]. The results are showed in Table 3.
Rights and permissions
About this article
Cite this article
Tian, C., Kristiansen, K.R., Kjelstrup, S. et al. Two Methods for Determination of Transport Numbers in Ion-Exchange Membranes. Int J Thermophys 43, 14 (2022). https://doi.org/10.1007/s10765-021-02939-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10765-021-02939-1