Skip to main content
Log in

Low Temperature Heat Capacity Study of Co2(bdc)2(dabco)

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Temperature dependence of molar heat capacity Cp of Co2(C8H4O4)2·C6H12N2 was first measured by vacuum adiabatic calorimetry in the temperature range of 5.4–303 K. Two anomalies at 11 K and 80 K have been identified. The obtained Cp values were compared with those for Zn2(C8H4O4)2·C6H12N2 and Ni2(C8H4O4)2·C6H12N2. Spin–phonon interaction between lattice vibrations of Co2(C8H4O4)2.C6H12N2 and electron spins of Co2+ was revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. X. Kong, H. Deng, F. Yan, J. Kim, J.A. Swisher, B. Smit, O.M. Yaghi, J.A. Reimer, Science 341, 882 (2013)

    Article  ADS  Google Scholar 

  2. Z. Ji, T. Li, O.M. Yaghi, Science 369, 674 (2020)

    Article  ADS  Google Scholar 

  3. B. Mu, K.S. Walton, J. Phys. Chem. C 115, 22748 (2011)

    Article  Google Scholar 

  4. F.A. Kloutse, R. Zacharia, D. Cossement, R. Chahine, Microporous Mesoporous Mater. 217, 1 (2015)

    Article  Google Scholar 

  5. H. Kaur, S. Sundriyal, V. Kumar, A.L. Sharma, K.-H. Kim, B. Wang, A. Deep, J. Ind. Eng. Chem. 80, 136 (2019)

    Article  Google Scholar 

  6. P. Vervoorts, J. Keupp, A. Schneemann, C.L. Hobday, D. Daisenberger, R.A. Fischer, R. Schmid, G. Kieslich, Angew. Chem. Int. Ed. 60, 787 (2021)

    Article  Google Scholar 

  7. V. Logvinenko, M. Zavakhina, V. Bolotov, D. Pishchur, D. Dybtsev, J. Therm. Anal. Calorim. 130, 335 (2017)

    Article  Google Scholar 

  8. V. Logvinenko, A. Sapianik, D. Pishchur, V. Fedin, J. Therm. Anal. Calorim. 138, 4453 (2019)

    Article  Google Scholar 

  9. I.E. Paukov, D.G. Samsonenko, D.P. Pischur, S.G. Kozlova, S.P. Gabuda, J. Solid State Chem. 220, 254 (2014)

    Article  ADS  Google Scholar 

  10. D.P. Pishchur, N.B. Kompankov, A.A. Lysova, S.G. Kozlova, J. Chem. Thermodyn. 130, 147 (2019)

    Article  Google Scholar 

  11. D.N. Dybtsev, H. Chun, K. Kim, Angew. Chem. Int. Ed. 43, 5033 (2004)

    Article  Google Scholar 

  12. Y. Kim, R. Haldar, H. Kim, J. Koo, K. Kim, Dalton Trans. 45, 4187 (2016)

    Article  Google Scholar 

  13. S.G. Kozlova, S.P. Gabuda, Sci. Rep. 7, 11505 (2017)

    Article  ADS  Google Scholar 

  14. S.G. Kozlova, M.R. Ryzhikov, D.P. Pishchur, I.V. Mirzaeva, Symmetry 11, 657 (2019)

    Article  Google Scholar 

  15. S.G. Kozlova, I.V. Mirzaeva, M.R. Ryzhikov, Coord. Chem. Rev. 376, 62 (2018)

    Article  Google Scholar 

  16. S.G. Kozlova, D.P. Pishchur, Found Phys. (2021). https://doi.org/10.1007/s10701-021-00416-1

    Article  Google Scholar 

  17. S.G. Kozlova, D.P. Pishchur, N.B. Kompankov, V.R. Shayapov, D.G. Samsonenko, J. Phys. Chem. C 124, 20222 (2020)

    Article  Google Scholar 

  18. S.G. Kozlova, D.G. Samsonenko, I.A. Tkachenko, A.B. Slobodyuk, D.A. Stepnov, A.S. Phys, Status Solidi B 253, 2252 (2016)

    Article  ADS  Google Scholar 

  19. S.G. Kozlova, M.R. Ryzhikov, V.R. Shayapov, D.G. Samsonenko, Phys. Chem. Chem. Phys. 22, 15242 (2020)

    Article  Google Scholar 

  20. W.S. Cleveland, J. Am. Stat. Assoc. 74, 829 (1979)

    Article  Google Scholar 

  21. F.E. Harrell, Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis, 2nd edn. (Springer, New York, 2015), pp. 13–539

    Book  Google Scholar 

  22. E.F. Westrum, Jr., G.T. Furukawa, J.P. McCullough, in Experimental Thermodynamics Volume I. Calorimetry of Non-reacting Systems, ed By J. P. McCullough, D. W. Scott (London Butterworths, 1968), 133–211

  23. J.D. Patterson, B.C. Bailey, Solid-State Physics Introduction to the Theory, 2nd edn. (Springer, Berlin, 2010), pp. 92–98

    Google Scholar 

  24. S. Mahdian, M.R. Naimi-Jamal, L. Panahi, Chem. Select. 3, 11223 (2018)

    Google Scholar 

  25. K. Tan, N. Nijem, P. Canepa, Q. Gong, J. Li, T. Thonhauser, Y.J. Chabal, Chem. Mater. 24, 3153 (2012)

    Article  Google Scholar 

  26. W.A. Harrison, Solid State Theory (Dover Publications, Inc., New York, 1979), pp. 389–435

    Google Scholar 

  27. S.J. Baxter, A. Schneemann, A.D. Ready, P. Wijeratne, A.P. Wilkinson, N.C. Burtch, JACS 141, 12849 (2019)

    Article  Google Scholar 

  28. M.R. Ryzhikov, S.G. Kozlova, J. Struct. Chem. 61, 161 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank D.G. Samsonenko for providing samples for research. The research was supported by the Russian Foundation for Basic Research, No. 20-03-00089 and the Ministry of Science and Higher Education of the Russian Federation, No. 121031700313-8.

Author information

Authors and Affiliations

Authors

Contributions

DPP and NSC carried out heat capacity measurements and edited the article. SGK analyzed all the data and wrote the original manuscript.

Corresponding author

Correspondence to Svetlana G. Kozlova.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests or personal relationships that could influence this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1666 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pishchur, D.P., Kompankov, N.B. & Kozlova, S.G. Low Temperature Heat Capacity Study of Co2(bdc)2(dabco). Int J Thermophys 43, 5 (2022). https://doi.org/10.1007/s10765-021-02935-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02935-5

Keywords

Navigation