Skip to main content
Log in

Determination of the Vapor Pressure and Evaporation Enthalpy of CeO2 Nano-Fuels Based on Isothermogravimetry

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The addition of nanoparticles to base fuel may bring about remarkable changes in a thermodynamic process such as evaporation, due to the intensified interaction between particles and liquid molecules. In this study, the nano-fuels containing the 20 nm and 50 nm cerium oxide (CeO2) particles with the dosing levels of 50 mg·L−1 and 100 mg·L−1 were prepared using N-tetradecane (C14) as base fuel and cetyltrimethyl ammonium bromide as dispersant. The evaporation characteristics of nano-fuels were investigated via a constant temperature thermogravimetric method. The thermodynamic parameters of nano-fuel evaporation process, such as activation energy, vapor pressure and evaporation enthalpy, were calculated based on Arrhenius equation, Antoine and Langmuir equations and Clausius–Clapeyron equation, respectively. It was revealed that the particle size and mass fraction of CeO2 nanoparticles had a consistent effect on the activation energy, vapor pressure and evaporation enthalpy of nano-fuels. The activation energy required for vaporization increased with the decrease of nanoparticle size or the increase of nanoparticle mass fraction, because of the low-specific heat capacity of nanoparticles. Moreover, the vapor pressure decreased with the decrease of nanoparticle size or the increase of the mass fraction for particle. This is because the addition of nanoparticles could augment the surface tension of fuel, retarding the diffusion of liquid phase molecules into gas phase. The evaporation enthalpy of nano-fuels increased due to the Van der Waals forces between fuel molecules and nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C.Y. Tso, S.C. Fu, C.Y.H. Chao, A semi-analytical model for the thermal conductivity of nanofluids and determination of the nanolayer thickness. Int. J. Heat Mass Transf. 70, 202–214 (2014)

    Article  Google Scholar 

  2. K. Sefiane, R. Bennacer, Nanofluids droplets evaporation kinetics and wetting dynamics on rough heated substrates. Adv. Coll. Interface Sci. 147, 263–271 (2009)

    Article  Google Scholar 

  3. X. Wang, X. Xu, S.U.S. Choi, Thermal conductivity of nanoparticle-fluid mixture. J. Thermophys. Heat Transf. 13, 474–480 (2012)

    Article  Google Scholar 

  4. C.H. Chen, C.Y. Ding, Study on the thermal behavior and cooling performance of a nanofluid-cooled microchannel heat sink. Int. J. Therm. Sci. 50, 378–384 (2011)

    Article  Google Scholar 

  5. M.F. Pakdaman, M.A. Akhavan-Behabadi, P. Razi, An experimental investigation on thermo-physical properties and overall performance of MWCNT/heat transfer oil nanofluid flow inside vertical helically coiled tubes. Exp. Therm. Fluid Sci. 40, 103–111 (2012)

    Article  Google Scholar 

  6. C. Kleinstreuer, Y. Feng, Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review. Nanoscale Res. Lett. 6, 1–1 (2011)

    Google Scholar 

  7. M.H. Esfe, S. Saedodin, S. Wongwises, D. Toghraie, An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. J. Therm. Anal. Calorim. 119, 1817–1824 (2015)

    Article  Google Scholar 

  8. J.A. Eastman, S.R. Phillpot, S.U.S. Choi, P. Keblinski, Thermal transport in nanofluids. Annu. Rev. Mater. Res. 34, 219–246 (2004)

    Article  ADS  Google Scholar 

  9. R.H. Chen, T.X. Phuoc, D. Martello, Effects of nanoparticles on nanofluid droplet evaporation. Int. J. Heat Mass Transf. 53, 3677–3682 (2010)

    Article  Google Scholar 

  10. M. Moghiman, B. Aslani, Influence of nanoparticles on reducing and enhancing evaporation mass transfer and its efficiency. Int. J. Heat Mass Transf. 61, 114–118 (2013)

    Article  Google Scholar 

  11. S.F. Wright, D. Dollimore, J.G. Dunn, K. Alexander, Determination of the vapor pressure curves of adipic acid and triethanolamine using thermogravimetric analysis. Thermochim. Acta 421, 25–30 (2004)

    Article  Google Scholar 

  12. D.M. Price, Vapor pressure determination by thermogravimetry. Thermochim. Acta 367–368, 253–262 (2001)

    Article  Google Scholar 

  13. K. Alexander, S. Korkel, S. Maixner, A cubic equation of state based on saturated vapor modeling and the application of model-based design of experiments for its validation. Chem. Eng. Sci. 65, 4194–4207 (2010)

    Article  Google Scholar 

  14. T. Kröhl, R. Kästel, W. König, H. Ziegler, Methods for determining the vapor pressure of active ingredients used in crop protection. Part V: thermogravimetry combined with solid phase microextraction (SPME). Pest Manage. Sci. 53, 300–310 (2015)

    Article  Google Scholar 

  15. J.E. Brady, J.L. Smith, C.E. Hart, J. Oxley, Estimating ambient vapor pressures of low volatility explosives by rising-temperature thermogravimetry. Propellants Explos. Pyrotech. 37, 215–222 (2012)

    Article  Google Scholar 

  16. F. Heym, W. Korth, B.J.M. Etzold, C. Kern, A. Jess, Determination of vapor pressure and thermal decomposition using thermogravimetrical analysis. Thermochim. Acta 622, 9–17 (2015)

    Article  Google Scholar 

  17. M. Suceska, M. Rajic, S. Matecic-Musanic, S. Zeman, Z. Jalový, Kinetics and heats of sublimation and evaporation of 1,3,3-trinitronzetidine (traz). J. Therm. Anal. Calorim. 74, 853–866 (2003)

    Article  Google Scholar 

  18. K. Chatterjee, A. Hazra, D. Dollimore, K.S. Alexander, Estimating vapor pressure curves by thermogravimetry: a rapid and convenient method for characterization of pharmaceuticals. Eur. J. Pharm. Biopharm. 54, 171–180 (2002)

    Article  Google Scholar 

  19. A. Hazra, D. Dollimore, K. Alexander, Thermal analysis of the evaporation of compounds used in aromatherapy using thermogravimetry. Thermochim. Acta 392–393, 221–229 (2002)

    Article  Google Scholar 

  20. J. Wei, B.H. Fan, Y. Pan, N.N. Xing, S.Q. Men, J. Tong, W. Guan, Vaporization enthalpy and the molar surface Gibbs free energy for ionic liquids [CnDmim][NTF2] (n=2,4). J. Chem. Thermodyn. 101, 278–284 (2016)

    Article  Google Scholar 

  21. S.P. Verevkin, R.V. Ralys, D.H. Zaitsau, V.N. Emelyanenko, C. Schick, Express thermo-gravimetric method for the vaporization enthalpies appraisal for very low volatile molecular and ionic compounds. Thermochim. Acta 538, 55–62 (2012)

    Article  Google Scholar 

  22. J. Tong, L. Liu, H. Li, W. Guan, X. Chen, Measurement and estimation of the vaporization enthalpy for amino acid ionic liquids [Cnmim][Thr](n=2,4). J. Chem. Thermodyn. 112, 293–298 (2017)

    Article  Google Scholar 

  23. S. Shuai, N. Abani, T. Yoshikawa, R.D. Reitz, S.W. Park, Simulating low temperature diesel combustion with improved spray models. Int. J. Therm. Sci. 48, 1786–1799 (2009)

    Article  Google Scholar 

  24. S. Lerdkanchanaporn, D. Dollimore, An investigation of the evaporation of stearic acid using a simultaneous TG-DTA unit. Thermochim. Acta. 324, 15–23 (1998)

    Article  Google Scholar 

  25. A. Hazra, K. Alexander, D. Dollimore, A. Riga, Characterization of some essential oils and their key compounds: thermoanalytical techniques. J. Therm. Anal. Calorim. 75, 317–330 (2004)

    Article  Google Scholar 

  26. F.W. Wilburn, D. Dollimore, Non-isothermal kinetics: a different approach. Thermochim. Acta 357, 141–145 (2000)

    Article  Google Scholar 

  27. M.H.U. Bhuiyan, R. Saidur, M.A. Amalina, R.M. Mostafizura, A.K.M.S. Islamc, Effect of anoparticles concentration and their sizes on surface tension of nanofluids. Procedia Eng. 105, 431–437 (2015)

    Article  Google Scholar 

  28. S.F. Wright, D. Dollimore, J.G. Dunn, K. Alexander, Determination of the vapor pressure curve of adipic acid and triethanlamine using thermogravimetric analysis. Thermochim. Acta 421, 25–30 (2004)

    Article  Google Scholar 

  29. E. Dichi, B. Legendre, M. Sghaier, Physico-chemical characterisation of a new polymorph of caffeine. J. Therm. Anal. Calorim. 115, 1551–1561 (2014)

    Article  Google Scholar 

  30. S. Vecchio, A. Catalani, V. Rossi, M. Tomassetti, Thermal analysis study on vaporization of some analgesics. Acetanilide and derivatives. Thermochim. Acta 420, 99–104 (2004)

    Article  Google Scholar 

  31. J.A. Dean, Lange’s Handbook of Chemistry (McGraw-Hill, New York, 1997)

    Google Scholar 

  32. J.L. Anderson, J.K. Dixon, E.J. Maginn, J.F. Brennecke, Measurement of SO2 solubility in ionic liquids. J. Phys. Chem. B 110, 15059–15062 (2006)

    Article  Google Scholar 

  33. J. Garai, Physical model for vaporization. Fluid Phase Equilib. 283, 89–92 (2009)

    Article  Google Scholar 

  34. J.N. Israelachvili, Intermolecular and Surface Forces: Revised, 3rd edn. (Academic, Cambridge, 2011)

    Google Scholar 

Download references

Acknowledgements

Authors wish to express much appreciation for the funds from the National Natural Science Foundation of China (Nos. 51761145011 and 51876082) and the Key Research Program of Jiangsu Province (BE2016139) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), which supported this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deqing Mei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Q., Mei, D., Sun, C. et al. Determination of the Vapor Pressure and Evaporation Enthalpy of CeO2 Nano-Fuels Based on Isothermogravimetry. Int J Thermophys 43, 1 (2022). https://doi.org/10.1007/s10765-021-02924-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02924-8

Keywords

Navigation