Skip to main content
Log in

Research on the Thermophysical Properties and Cycle Performances of R1234yf/R290 and R1234yf/R600a

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

R134a, commonly used for automotive air conditioning, will be phased out due to its high global warming potential, while R1234yf/R290 and R1234yf/R600a were considered as two potential alternatives owing to their excellent environmental characteristics. In this work, the thermophysical properties and cycle performances of the above refrigerants were investigated. The vapor–liquid equilibrium predicted models for R1234yf/R290 and R1234yf/R600a were constructed using SRK, PR equations of state combined with vdW, HV mixing rules, respectively, and the results presented that all four models could describe the vapor–liquid equilibrium characteristics of mixtures well. Among them, the model of PR equation combined with HV mixing rule had the highest accuracy, with the average absolute relative deviations of 0.1% and 0.21% for pressures, and the average absolute deviations of 0.0012 and 0.0027 for vapor-phase mole fractions, respectively. R1234yf/R290 and R1234yf/R600a mixtures exhibited the near azeotropic properties at the molar fractions of R1234yf near 0.3 and 0.85, respectively. Then, the enthalpy and entropy calculation models of R1234yf/R290 (0.3/0.7) and R1234yf/R600a (0.85/0.15) were developed in combination with the residual properties. Finally, the cycle performances of mixtures were analyzed, and the present results suggested that the cycle performance of R1234yf/R290 (0.3/0.7) was better than that of R1234yf/R600a (0.85/0.15), R1234yf, and R134a which could provide the basic thermophysical parameters and theoretical basis for the search of alternative refrigerants to R134a in automotive air conditioning systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

a :

Energy parameter (Pa·cm6·mol2)

b :

Co-volume parameter (cm3·mol1)

c p :

Isobaric specific heat capacity (kJ·kg1·K1)

COP:

Coefficient of performance

f :

Free energy (kJ·kg1)

\(g^{E}_{\infty }\) :

Excess Gibbs’ energy at infinite pressure

h :

Specific enthalpy (kJ·kg1)

HV:

Huron-Vidal

k ij :

Binary interaction parameter

M :

Mole molecule mass (g·mol1)

N :

Number of experimental data

NRTL:

Non-random two-liquid

P :

Pressure (MPa)

PR:

Peng-Robinson

q m :

Specific refrigeration capacity (kJ·kg1)

q v :

Volumetric refrigeration capacity (kJ·m3)

R:

Universal gas constant (J·mol1·K1)

s :

Specific entropy (kJ·kg1·K1)

SRK:

Soave–Redlich–Kwong

T :

Temperature (K)

v :

Molar volume (cm3·mol1)

vdW:

Van der Waals

VLE:

Vapor–liquid equilibrium

w :

Specific power consumption (kJ·kg1)

X :

Mass fraction

x :

Molar fraction of liquid phase

y :

Molar fraction of vapor phase

α ij :

NRTL model parameter

γ :

Compression ratio

ρ :

Density (kg·m3)

τ ij :

Binary interaction parameter of NRTL model

ω :

Acentric factor

bub:

Bubble point

c:

Critical

cal:

Calculated

com:

Compressor

con:

Condenser

dew:

Dew point

dis:

Discharge

eva:

Evaporator

exp:

Experimental

i, j :

Component index

id:

Ideal state

in:

Inlet

l:

Liquid

m:

Mixture

max:

Maximum

out:

Outlet

R:

Contrast state

r:

Residual

ref:

The data are taken from REFPROP 9.1

v:

Vapor

References

  1. B.O. Bolaji, Z. Huan, Renew. Sustain. Energy Rev. 18, 49–54 (2013). https://doi.org/10.1016/j.rser.2012.10.008

    Article  Google Scholar 

  2. S.A. Montzka, M. McFarland, S.O. Andersen, B.R. Miller, D.W. Fahey, B.D. Hall, L. Hu, C. Siso, J.W. Elkins, J. Phys. Chem. A. 119, 4439–4449 (2015). https://doi.org/10.1021/jp5097376

    Article  Google Scholar 

  3. I.H. Bell, P.A. Domanski, M.O. McLinden, G.T. Linteris, Int. J. Refrig. 104, 485–495 (2019). https://doi.org/10.1016/j.ijrefrig.2019.05.035

    Article  Google Scholar 

  4. S. Devotta, A.V. Waghmare, N.N. Sawant, B.M. Domkundwar, Appl. Therm. Eng. 21, 703–715 (2001). https://doi.org/10.1016/S1359-4311(00)00079-X

    Article  Google Scholar 

  5. Y. Shin, T. Kim, A. Lee, H. Cho, Entropy 22, 1 (2019). https://doi.org/10.3390/e22010004

    Article  ADS  Google Scholar 

  6. Z. Meng, H. Zhang, M. Lei, Y. Qin, J. Qiu, Int. J. Heat Mass Transfer 116, 362–370 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.049

    Article  Google Scholar 

  7. R.K. Gaurav, Mater. Today: Proc. 4, 112–118 (2017). https://doi.org/10.1016/j.matpr.2017.01.003

    Article  Google Scholar 

  8. J.K. Vaghela, Energy Proc. 109, 153–160 (2017). https://doi.org/10.1016/j.egypro.2017.03.083

    Article  Google Scholar 

  9. H. Cho, H. Lee, C. Park, Appl. Therm. Eng. 61, 563–569 (2013). https://doi.org/10.1016/j.applthermaleng.2013.08.030

    Article  Google Scholar 

  10. Y. Lee, D. Jung, Appl. Therm. Eng. 35, 240–242 (2012). https://doi.org/10.1016/j.applthermaleng.2011.09.004

    Article  Google Scholar 

  11. S. Daviran, A. Kasaeian, S. Golzari, O. Mahian, S. Nasirivatan, S. Wongwises, Appl. Therm. Eng. 110, 1091–1100 (2017). https://doi.org/10.1016/j.applthermaleng.2016.09.034

    Article  Google Scholar 

  12. Y. Zhang, C. Liu, T. Wang, L. Pan, W. Li, J. Shi, J. Chen, Int. J. Refrig. 110, 286–294 (2020). https://doi.org/10.1016/j.ijrefrig.2019.11.001

    Article  Google Scholar 

  13. I. Sarbu, Int. J. Refrig. 46, 123–141 (2014). https://doi.org/10.1016/j.ijrefrig.2014.04.023

    Article  Google Scholar 

  14. T.S. Ravikumar, D. Mohan Lal, Energy Convers. Manag. 50, 1891–1901 (2009). https://doi.org/10.1016/j.enconman.2009.04.027

    Article  Google Scholar 

  15. K.A. Joudi, A.S.K. Mohammed, M.K. Aljanabi, Energy Convers. Manag. 44, 2959–2976 (2003). https://doi.org/10.1016/s0196-8904(03)00051-7

    Article  Google Scholar 

  16. Q. Zhong, X. Dong, Y. Zhao, H. Li, H. Zhang, H. Guo, M. Gong, Int. J. Refrig. 81, 26–32 (2017). https://doi.org/10.1016/j.ijrefrig.2017.05.016

    Article  Google Scholar 

  17. Q. Zhong, X. Dong, H. Zhang, H. Li, M. Gong, J. Shen, J. Wu, J. Chem. Thermodyn. 107, 126–132 (2017). https://doi.org/10.1016/j.jct.2016.12.029

    Article  Google Scholar 

  18. Y. Chen, Z. Yang, R. Rui, B. Feng, Z. Lv, W. Zhao, Y. Ge, CIESC Journal 70, 3248–3255 (2019)

    Google Scholar 

  19. P. Hu, L.X. Chen, Z.S. Chen, Fluid Phase Equilib. 365, 1–4 (2014). https://doi.org/10.1016/j.fluid.2013.12.015

    Article  Google Scholar 

  20. H. Zhang, H. Li, B. Gao, Q. Zhong, W. Wu, W. Liu, X. Dong, M. Gong, E. Luo, Int. J. Refrig. 95, 28–37 (2018). https://doi.org/10.1016/j.ijrefrig.2018.07.029

    Article  Google Scholar 

  21. A. Saeed, S. Ghader, Fluid Phase Equilib. 493, 10–25 (2019). https://doi.org/10.1016/j.fluid.2019.03.027

    Article  Google Scholar 

  22. X. Chen, H. Li, Fluid Phase Equilib. 528, 112852 (2021). https://doi.org/10.1016/j.fluid.2020.112852

    Article  Google Scholar 

  23. N.G. Tassin, V.A. Mascietti, M. Cismondi, Fluid Phase Equilib. 480, 53–65 (2019). https://doi.org/10.1016/j.fluid.2018.10.005

    Article  Google Scholar 

  24. M. Ghanbari, M. Ahmadi, A. Lashanizadegan, Cryogenics 84, 13–19 (2017). https://doi.org/10.1016/j.cryogenics.2017.04.001

    Article  ADS  Google Scholar 

  25. G. Soave, S. Gamba, L.A. Pellegrini, Fluid Phase Equilib. 299, 285–293 (2010). https://doi.org/10.1016/j.fluid.2010.09.012

    Article  Google Scholar 

  26. X. Yao, L. Ding, X. Dong, Y. Zhao, X. Wang, J. Shen, M. Gong, Int. J. Refrig. 120, 97–103 (2020). https://doi.org/10.1016/j.ijrefrig.2020.09.008

    Article  Google Scholar 

  27. G. Soave, Chem. Eng. Sci. 27, 1197–1203 (1972). https://doi.org/10.1016/0009-2509(72)80096-4

    Article  Google Scholar 

  28. D.Y. Peng, D.B. Robinson, Ind. Eng. Chem. Res. 15, 59–64 (1976). https://doi.org/10.1021/i160057a011

    Article  Google Scholar 

  29. E.W. Lemmon, M.O. Mclinden, M.L. Huber, Reference Fluid Thermodynamic and Transport Properties (REFPROP), NIST Standard Reference Database 23, Version 9.1 (2013).

  30. D.S.H. Wong, S.I. Sandler, AIChE J. 38, 671–680 (1992). https://doi.org/10.1002/aic.690380505

    Article  Google Scholar 

  31. H.J. Vidal, Fluid Phase Equilib. 3, 255–271 (1979). https://doi.org/10.1016/0378-3812(79)80001-1

    Article  Google Scholar 

  32. H. Renon, J.M. Prausnitz, AIChE J. 14, 135–144 (1968). https://doi.org/10.1002/aic.690140124

    Article  Google Scholar 

  33. B.B. Yu, H.S. Ouyang, J.Y. Shi, W.C. Liu, J.P. Chen, Int. J. Refrig. 121, 95–104 (2021). https://doi.org/10.1016/j.ijrefrig.2020.09.018

    Article  Google Scholar 

  34. N.A. Lai, Appl. Therm. Eng. 70, 1–6 (2014). https://doi.org/10.1016/j.applthermaleng.2014.04.042

    Article  ADS  Google Scholar 

  35. R. Wang, X. Zhang, J. Hu, J. Ma, Y. Shang, Refrig. Air-Cond. 19, 18–21 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22068024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuande Dai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Li, B., Feng, L. et al. Research on the Thermophysical Properties and Cycle Performances of R1234yf/R290 and R1234yf/R600a. Int J Thermophys 42, 123 (2021). https://doi.org/10.1007/s10765-021-02875-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02875-0

Keywords

Navigation