Skip to main content
Log in

Quick Determination of Thermal Conductivity of Thermal Insulators Using a Modified Lee–Charlton’s Disc Apparatus Technique

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Assorted potential thermal insulators are fabricated nowadays for possible applications in various fields. Unfortunately, drawbacks like selective suitability, unavailability, and expensiveness hinder the progress in the usage of several devices that are efficient and suitable for probing the thermal conductivity values of such materials. Though the observed challenges can be overcome by using the traditional Lee–Charlton’s Disc (TLD) apparatus, a long-time duration is usually required for the set-up to attain steady state. In this work, a modified Lee–Charlton’s Disc (MLD) apparatus set-up has been designed and put to use. The results showed decrements by 65.66% to 71.87% in the steady-state duration when using the MLD apparatus. By employing the MLD apparatus, thermal conductivity values were determined for thermal insulators with thickness of up to about 9.0 mm. The repeatability and reproducibility of the MLD apparatus satisfied the conditions for unconditional acceptability of a test device/method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M. Tychanicz-Kwiecieñ, J. Wilk, P. Gil, J. Thermophys. Heat Trans. (2018). https://doi.org/10.2514/1.T5420

    Article  Google Scholar 

  2. T. Log, S.E. Gustafsson, Fire Mater. (1995). https://doi.org/10.1002/fam.810190107

    Article  Google Scholar 

  3. J. Laskowski, B. Millow, L. Ratke, J. Non-Cryst, Solids (2016). https://doi.org/10.1016/j.jnoncrysol.2016.03.020

    Article  Google Scholar 

  4. Y. Li, C. Shi, J. Liu, E. Liu, J. Shao, Z. Chen, D.J. Dorantes-Gonzalez, X. Hu, Meas Sci Technol. (2014). https://doi.org/10.1088/0957-0233/25/1/015006

    Article  Google Scholar 

  5. S. Jayachandran, R.N. Prithiviraajan, K.S. Reddy, AIP J. Appl. Phys. (2017). https://doi.org/10.1063/1.4990161

    Article  Google Scholar 

  6. A. Elkholy, H. Sadek, R. Kempers, Int. J. Therm. Sci. (2019). https://doi.org/10.1016/j.ijthermalsci.2018.09.021

    Article  Google Scholar 

  7. M.J. Assael, K.D. Antoniadis, I.N. Metaxa, S.K. Mylona, J.A.M. Assael, J. Wu, M. Hu, Int. J. Thermophys. (2015). https://doi.org/10.1007/s10765-015-1964-6

    Article  Google Scholar 

  8. Z. Lei, S. Zhu, N. Pan, J. Heat Trans. (2010). https://doi.org/10.1115/1.4000049

    Article  Google Scholar 

  9. ASTM D5334, ASTM International, West Conshohocken, PA (2014). https://doi.org/10.1520/D5334-14

  10. J.H. Saadie, Int. J. Eng. Technol. 16, 4 (2016)

    Google Scholar 

  11. L. Qiu, N. Zhu, Y. Feng, E.E. Michaelides, G. Zyla, D. Jing, X. Zhang, P.M. Norris, C.N. Markides, O. Mahian, Phys. Rep. (2020). https://doi.org/10.1016/j.physrep.2019.12.001

    Article  Google Scholar 

  12. ASTM C177, ASTM International, West Conshohocken, PA (2019). https://doi.org/10.1520/C0177-19

  13. ASTM C1045, ASTM International, West Conshohocken, PA (2019). https://doi.org/10.1520/C1045-19

  14. ASTM C518, ASTM International, West Conshohocken, PA (2017). https://doi.org/10.1520/C0518-17

  15. U.W. Robert, S.E. Etuk, G.P. Umoren, O.E. Agbasi, Int. J. Thermophys. (2019). https://doi.org/10.1007/s10765-019-2547-8

    Article  Google Scholar 

  16. A. Hoseini, C. McCague, M. Andisheh-Tadhir, M. Bahrami, Int. J. Heat Mass Transf. (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.030

    Article  Google Scholar 

  17. R.C. Mohapatra, A. Mishra, B. Choudhury, Am. J. Mech. Eng. 2, 114 (2014)

    Article  Google Scholar 

  18. F.N. Gesa, A.R. Atser, I.S. Aondoakaa, Am. J. Eng. Res. 3, 245 (2014)

    Google Scholar 

  19. S.D. Ekpe, G.T. Akpabio, Turk. J. Phys. 18, 2 (1994)

    Google Scholar 

  20. G.T. Akpabio, E.E. Ituen, A.N. Ikot, Int. J. Pure Appl. Phys. 6, 4 (2010)

    Google Scholar 

  21. S.E. Etuk, L.E. Akpabio, K.E. Akpabio, Arab. J. Sci. Eng. 30, 1 (2005)

    Google Scholar 

  22. M.B. Ochang, P.R. Jubu, A.N. Amah, J.L. Oche, Am. J. Eng. Res. 7, 6 (2018)

    Google Scholar 

  23. S.K. Alausa, O.O. Oyesiku, J.O. Aderibigbe, O.S. Akinola, Afr. J. Plant Sci. 5, 4 (2011)

    Google Scholar 

  24. P. Philip, L. Gagbenle, Int. J. Inn. Sci. Res. 9, 2 (2014)

    Google Scholar 

  25. J.O. Dirisu, S.O. Oyedepo, O.S.I. Fayomi, AIP Conf. Proc. (2019). https://doi.org/10.1063/1.5138562

    Article  Google Scholar 

  26. Y. Jannot, A. Degiovanni, V. Grigorova-Moutiers, J. Godefroy, Meas. Sci. Technol. (2017). https://doi.org/10.1088/1361-6501/28/1/015008

    Article  Google Scholar 

  27. E.R.K. Rajput, Mass and Heat Transfer, 6th edn. (S. Chand & Company Pvt, New Delhi, 2015), p. 13

    Google Scholar 

  28. L. Qiu, X. Zhang, Z. Guo, Q. Li (2021). https://doi.org/10.1016/j.carbon.2021.02.105

    Article  Google Scholar 

  29. ISO/IEC Guide 98-3, Uncertainty measurement part 3: guide to the expression of uncertainty in measurement, 1st edn. (ISO, Switzerland, 2008) pp. 1–130.

  30. M. Koru, Arab. J. Sci. Eng. (2016). https://doi.org/10.1007/s13369-016-2122-6

    Article  Google Scholar 

  31. H. Weber, I. De Grave, E. Röhrl, Ullmann’s Foamed Plastics, Encyclopaedia of Industrial Chemistry (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2012), pp. 540–567

    Google Scholar 

  32. F. Dominguez-Muñoz, B. Anderson, J.M. Cejudo-López, A. Carrillo-André, Energy Build. (2010). https://doi.org/10.1016/j.enbuild.2010.07.006

    Article  Google Scholar 

  33. F. Asdrubali, F. D’Alessandro, S. Schiavoni, Sustain. Mater. Technol. (2015). https://doi.org/10.1016/j.susmat.2015.05.002

    Article  Google Scholar 

  34. A.A. Abdou, I.M. Budaiwi, J. Build. Phys (2005). https://doi.org/10.1177/1744259105056291

    Article  Google Scholar 

  35. A. Lakatos, F. Kalmár, Mater. Struct. (2013). https://doi.org/10.1617/s11527-012-9956-5

    Article  Google Scholar 

  36. E. Mihlayandar, S. Dilmac, A. Güner, Mater. Des. (2008). https://doi.org/10.1016/j.matdes.2007.01.032

    Article  Google Scholar 

  37. B. Doğan, H. Tan, Int. J. Polym. Sci. (2019). https://doi.org/10.1155/2019/6350326

    Article  Google Scholar 

  38. Z. Ademović, J. Suljagić, J. Zulić, Contemp. Mater 1, 42–47 (2017)

    Google Scholar 

  39. J.J. Valencia, A.S.M. Handbook, Casting ASM Handbook Committee (ASM International Concurrent Technologies Corporation (National Physical Laboratory, Peter N. Quested, 2008), pp. 468–481

    Google Scholar 

  40. W.W. Chin, The partial least squares approach for structural equation modelling, in Methodology for Business and Management. Modern methods for Business Research. ed. by G.A. Marcoulides (Lawrence Erlbaum Associates Publishers, Mahwah, NJ, 1998), pp. 295–358

    Google Scholar 

  41. D.R. Lide, CRC Handbook of Chemistry and Physics, 85th edn. (CRC Press, Boca Raton, FL, Section 12-220, 2005). p. 2298.

  42. E.N. Mgbenu, S. Ifedili, A.I. Menkiti, B.N. Onwuagba, Waves, Optics and Thermal Physics. Nigerian University Series (Africana-FEP Publishers Limited, Onitsha, 1999), pp. 128–146

    Google Scholar 

  43. Automotive Industry Action Group (A.I.A.G), Measurement System Analysis (MSA) manual, 1st edn. (Automotive Industry Action Group, A.I.A.G), 1990, pp. 46.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Okechukwu E. Agbasi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robert, U.W., Etuk, S.E., Agbasi, O.E. et al. Quick Determination of Thermal Conductivity of Thermal Insulators Using a Modified Lee–Charlton’s Disc Apparatus Technique. Int J Thermophys 42, 113 (2021). https://doi.org/10.1007/s10765-021-02864-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02864-3

Keywords

Navigation