Skip to main content
Log in

An Experimental Study on Electrical Conductivity of Several Oxide Nanoparticle Enhanced PEG 400 Fluid

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this experimental study, nanofluids based on polyethylene-glycol PEG 400 enhanced with zinc and aluminum oxide nanoparticles were studied in terms of pH and electrical conductivity. The nanofluids were found to be stable with a pH in the range 7.45 to 8.90 at ambient temperature. Electrical conductivity was evaluated both at ambient temperature and at heating up to 60 °C and results showed that the nanofluids electrical conductivity increases with temperature and a correlation is proposed. Plus, PEG 400 electrical conductivity variation with temperature was found to be in line with state of the art, while Al2O3 addition decreases the electrical conductivity and ZnO nanoparticle have little to no influence. As a conclusion, the variation of electrical conductivity with nanoparticle concentration is not fully understood in the open literature and intense studies are needed in order to fully understand the mechanisms of its variation and predictability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

R2 :

R-squared value, -

T:

Temperature, °C

εr :

Dielectric constant of base fluid

φ:

Volume fraction of nanoparticles

ϕ:

Mass concentration of nanoparticles, %

ρ:

Density, kg m3

σ:

Electrical conductivity, µS·cm−1

bf:

Refers to base-fluid

nf:

Refers to nanofluid

p:

Refers to nanoparticles

BG:

BioGlycol

EDL:

Electrical double layer

EG:

Ethylene glycol

PEG:

Polyethylene glycol

W:

Water

References

  1. B. Zalba, J.M. Marın, L.F. Cabeza, H. Mehling, Appl. Therm. Eng. 23, 251–283 (2003). https://doi.org/10.1016/S1359-4311(02)00192-8

    Article  Google Scholar 

  2. A.A. Minea, Nanomaterials 11, 86 (2021). https://doi.org/10.3390/nano11010086

    Article  Google Scholar 

  3. A. Sharma, V.V. Tyagi, C.R. Chen, D. Buddhi, Renew. Sustain. Energy Rev. 13, 318–345 (2009). https://doi.org/10.1016/j.rser.2007.10.005

    Article  Google Scholar 

  4. A. Waqas, Z.U. Din, Renew. Sustain. Energy Rev. 18, 607–625 (2013). https://doi.org/10.1016/j.rser.2012.10.034

    Article  Google Scholar 

  5. D. Zhou, C.Y. Zhao, Y. Tian, Appl. Energy 92, 593–605 (2012). https://doi.org/10.1016/j.apenergy.2011.08.025

    Article  Google Scholar 

  6. E. Osterman, V.V. Tyagi, V. Butala, N.A. Rahim, U. Stritih, Energy Build 49, 37–49 (2012). https://doi.org/10.1016/j.enbuild.2012.03.022

    Article  Google Scholar 

  7. J. Giro-Paloma, M. Martínez, L.F. Cabeza, A.I. Fernández, Renew. Sustain. Energy Rev. 53, 1059–1075 (2016). https://doi.org/10.1016/j.rser.2015.09.040

    Article  Google Scholar 

  8. M.A. Marcos, D. Cabaleiro, M.J.G. Guimarey, M.J.P. Comuñas, L. Fedele, J. Fernández, L. Lugo, Nanomaterials 8, 16 (2018). https://doi.org/10.3390/nano8010016

    Article  Google Scholar 

  9. M.F. Demirbas, Energy Sources Part. B 1, 85–95 (2006). https://doi.org/10.1080/009083190881481

    Article  Google Scholar 

  10. M. Ahmad, A. Bontemps, H. Sallée, D. Quenard, Energy Build 38, 673–681 (2006). https://doi.org/10.1016/j.enbuild.2005.11.002

    Article  Google Scholar 

  11. Y. Azizi, S.M. Sadrameli, Energy Convers. Manag. 128, 294–302 (2016). https://doi.org/10.1016/j.enconman.2016.09.081

    Article  Google Scholar 

  12. K.A.R. Ismail, J.N.C. Castro, Int. J. Energy Res. 21, 1281–1296 (1997). https://doi.org/10.1002/(SICI)1099-114X(199711)21:14%3c1281::AID-ER322%3e3.0.CO;2-P

    Article  Google Scholar 

  13. D. Zhang, M. Chen, S. Wu, Q. Liu, J. Wan, Constr. Build. Mater. 169, 513–521 (2018). https://doi.org/10.1016/j.conbuildmat.2018.02.167

    Article  Google Scholar 

  14. B. Tang, C. Wu, M. Qiu, X. Zhang, S. Zhang, Mater. Chem. Phys. 144, 162–167 (2014). https://doi.org/10.1016/j.matchemphys.2013.12.036

    Article  Google Scholar 

  15. Y. Kou, S. Wang, J. Luo, K. Sun, J. Zhang, Z. Tan, Q. Shi, J. Chem. Thermodyn. 128, 259–274 (2019). https://doi.org/10.1016/j.jct.2018.08.031

    Article  Google Scholar 

  16. A.I. Gómez-Merino, J.J. Jiménez-Galea, F.J. Rubio-Hernández, J.L. Arjona-Escudero, I.M. Santos-Ráez, Processes 8, 1535 (2020). https://doi.org/10.3390/pr8121535

    Article  Google Scholar 

  17. H. Badenhorst, Int. J. Thermophys. 40, 52 (2019). https://doi.org/10.1007/s10765-019-2517-1

    Article  ADS  Google Scholar 

  18. B. Mu, X. Li, X. Feng, Y. Li, C. Ding, G. Zhao, J. Yang, Int. J. Thermophys. 42, 50 (2021). https://doi.org/10.1007/s10765-021-02806-z

    Article  ADS  Google Scholar 

  19. F.J.V. Santos, C.A. Nieto de Castro, P.J.F. Mota, A.P.C. Ribeiro, Int. J. Thermophys. 31, 1869–1879 (2010). https://doi.org/10.1007/s10765-009-0584-4

    Article  ADS  Google Scholar 

  20. N. Zivkovic, S. Serbanovic, M. Kijevcanin, E. Zivkovic, Int. J. Thermophys. 34, 1002–1020 (2013). https://doi.org/10.1007/s10765-013-1469-0

    Article  ADS  Google Scholar 

  21. A.A. Minea, Nanomaterials 9, 1592 (2019). https://doi.org/10.3390/nano9111592

    Article  Google Scholar 

  22. J.C. Maxwell, A Treatise of Electricity and Magnetism, 3rd edn. (Oxford University Press, London, 1892), pp. 435–449

    Google Scholar 

  23. D.A.G. Bruggeman, Ann. Phys. 24, 639–664 (1935). https://doi.org/10.1002/andp.19354160705

    Article  Google Scholar 

  24. H. Fricke, Phys. Rev. 24, 575–585 (1924). https://doi.org/10.1103/PhysRev.24.575

    Article  ADS  Google Scholar 

  25. S. Akilu, A.T. Baheta, K. Kadirgama, E. Padmanabhan, K.V. Sharma, J. Mol. Liq. 284, 780–792 (2019). https://doi.org/10.1016/j.molliq.2019.03.159

    Article  Google Scholar 

  26. J. Fal, M. Wanic, M. Malick, M. Oleksy, G. Zyła, Acta Phys. Pol. A 135, 1237–1239 (2019)

    Article  ADS  Google Scholar 

  27. G. Zyła, J.P. Vallejo, J. Fal, L. Lugo, Int. J. Heat Mass Transf. 121, 1201–1213 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.073

    Article  Google Scholar 

  28. G. Zyła, J. Fal, Thermochim. Acta 637, 11–16 (2016). https://doi.org/10.1016/j.tca.2016.05.006

    Article  Google Scholar 

  29. G. Zyła, J. Fal, Thermochim. Acta 650, 106–113 (2017). https://doi.org/10.1016/j.tca.2017.02.001

    Article  Google Scholar 

  30. M.F. Coelho, M.A. Rivas, G. Vilão, E.M. Nogueira, T.P. Iglesias, J. Chem. Thermodynamics 132, 164–173 (2019). https://doi.org/10.1016/j.jct.2018.12.02

    Article  Google Scholar 

  31. S.N. Shoghl, J. Jamali, M.K. Moraveji, Exp. Therm. Fluid Sci. 74, 339–346 (2016). https://doi.org/10.1016/j.expthermflusci.2016.01.004

    Article  Google Scholar 

  32. M.M. Heyhat, A. Irannezhad, J. Mol. Liq. 268, 169–175 (2018). https://doi.org/10.1016/j.molliq.2018.07.022

    Article  Google Scholar 

  33. A.A. Minea, R.S. Luciu, Microfluid Nanofluid 13, 977–985 (2012). https://doi.org/10.1007/s10404-012-1017-4

    Article  Google Scholar 

  34. A.A. Minea, Curr. Nanosci. 9, 81–88 (2013). https://doi.org/10.2174/157341313805117929

    Article  ADS  Google Scholar 

  35. M. Khdher, N.A. CheSidik, W.A.W. Hamzah, R. Mamat, Int. J. Heat Mass Transf. 73, 75–83 (2016). https://doi.org/10.1016/j.icheatmasstransfer.2016.02.006

    Article  Google Scholar 

  36. C.T. Wamkam, M.K. Opoku, H. Hong, P. Smith, Int. J. Appl. Phys. 109, 024305 (2011). https://doi.org/10.1063/1.3532003

    Article  ADS  Google Scholar 

  37. X.-J. Wang, H. Li, X.-F. Li, Z.-F. Wang, F. Lin, Chin. Phys. Lett. 28, 086601 (2011). https://doi.org/10.1088/0256-307X/28/8/086601

    Article  ADS  Google Scholar 

  38. A. Menbari, A.A. Alemrajabi, Y. Ghayeb, Exp. Therm. Fluid Sci. 74, 122–129 (2016). https://doi.org/10.1016/j.expthermflusci.2015.11.025

    Article  Google Scholar 

  39. S.K. Babita, S.M. Sharma, Gupta Exp. Therm. Fluid Sci. 79, 202–212 (2016). https://doi.org/10.1016/j.expthermflusci.2016.06.029

    Article  Google Scholar 

  40. W. Liu, W. Sun, A.G.L. Borthwick, J. Ni, Colloids Surf. A Physicochem. Eng. Asp. 434, 319–328 (2013). https://doi.org/10.1016/j.colsurfa.2013.05.010

    Article  Google Scholar 

  41. L.P. Shen, H. Wang, M. Dong, Z.C. Ma, H.B. Wang, Phys. Lett. A 376, 1053–1057 (2012). https://doi.org/10.1016/j.physleta.2012.02.006

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alina Adriana Minea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chereches, M., Bejan, D., Chereches, E.I. et al. An Experimental Study on Electrical Conductivity of Several Oxide Nanoparticle Enhanced PEG 400 Fluid. Int J Thermophys 42, 104 (2021). https://doi.org/10.1007/s10765-021-02855-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02855-4

Keywords

Navigation