Skip to main content
Log in

Convective Flow Boiling Heat Transfer Enhancement with Aqueous Al2O3 and TiO2 Nanofluids: Experimental Investigation

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The convective flow boiling characteristics of aqueous Al2O3 and TiO2 nanofluids are presented in this paper. Stable suspensions of aqueous Al2O3 and TiO2 nanofluids at two different concentrations of 0.01 and 0.1 wt% were prepared and allowed to flow through a horizontal annulus under varying heat flux from 26,140.132 to 53,573.503 W⋅m−2 and varying flow rates from 3 to 6 L⋅min−1. Parametric effects of nanoparticle concentration, heat flux, and flow rate on the heat transfer coefficient (HTC) were studied. Variation in pressure drop and pumping power at studied concentration and flow rates was estimated. In addition to that, bubble growth and nucleation site were analyzed using flow visualization technique. Enhancement in the HTC was obtained with increasing concentration and flow rate. A maximum of 2.4 times enhancement in HTC relative to water was observed. Bubble growth and nucleation site density increased with increasing heat flux and nanofluid concentration. Pressure drop and pumping power increased with nanoparticle addition and even at such a low-flow condition. Highest pressure drop of 33.33 % was registered with nanofluids at 0.1 wt%. The change in heating surface roughness due to particle deposition affects heat transfer performance. Finally, figure of merit showed that nanofluids are better alternatives to their basefluids for superior heat transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

A:

Absorbance (a.u)

D:

Diameter (m)

I:

Current (A)

L:

Length (m)

h:

Heat transfer coefficient (W m2⋅K1)

q’:

Heat flux (W⋅m2)

T:

Temperature (°C)

P:

Pressure (kPa)

U:

Uncertainty in measurement

Φ:

Wt concentration (%)

ω:

Weight (g)

Δ:

Difference or error

π:

Constant

bf:

Basefluid

nf:

Nanofluid

np:

Nanoparticles

in:

Inlet

out:

Outlet

s:

Surface

r:

Ratio

References

  1. S.U.S. Choi, Am. Soc. Mech. Eng. Fluids Eng. Div. FED (1995)

  2. R. Mondragón, C. Segarra, R. Martínez-Cuenca, J.E. Juliá, J.C. Jarque, Powder Technol. 249, 516 (2013)

    Article  Google Scholar 

  3. W. Duangthongsuk, S. Wongwises, Exp. Therm. Fluid Sci. 33, 706 (2009)

    Article  Google Scholar 

  4. R. Hentschke, Nanoscale Res. Lett. (2016)

  5. L.S. Sundar, M.K. Singh, A.C.M. Sousa, Int. Commun. Heat Mass Transf. 52, 73 (2014)

    Article  Google Scholar 

  6. S.J. Kim, T. McKrell, J. Buongiorno, L. Wen Hu, Nucl. Eng. Des. 240, 1186 (2010)

    Article  Google Scholar 

  7. T. Il Kim, W.J. Chang, S.H. Chang, Int. J. Heat Mass Transf. 54, 2021 (2011)

    Article  Google Scholar 

  8. S.D. Park, I.C. Bang, Nucl. Eng. Des. 265, 310 (2013)

    Article  Google Scholar 

  9. H. Aminfar, M. Mohammadpourfard, R. Maroofiazar, Exp. Therm. Fluid Sci. 58, 156 (2014)

    Article  Google Scholar 

  10. H. Setoodeh, M.S. Student, A. Keshavarz, A. Ghasemian, A. Nasouhi, M.S. Student, Appl. Therm. Eng. (2015)

  11. N. Patra, V. Gupta, E. Pradyumna, R. Singh, P. Ghosh, R.S. Singh, A. Nayak, Exp. Therm. Fluid Sci. 89, 211 (2017)

    Article  Google Scholar 

  12. N. Patra, P. Ghosh, R.S. Singh, A. Nayak, Int. J. Heat Mass Transf. 135, 331 (2019)

    Article  Google Scholar 

  13. K.B. Rana, G.D. Agrawal, J. Mathur, U. Puli, Nucl. Eng. Des. 270, 217 (2014)

    Article  Google Scholar 

  14. K.H. Bang, K.K. Kim, S.K. Lee, B.W. Lee, Int. J. Therm. Sci. 50, 280 (2011)

    Article  Google Scholar 

  15. S.W. Lee, S.D. Park, S. Kang, S.M. Kim, H. Seo, D.W. Lee, I.C. Bang, Nucl. Eng. Technol. 44, 429 (2012)

    Article  Google Scholar 

  16. O.S. Prajapati, N. Rohatgi, Sci. Technol. Nucl. Install. (2014)

  17. M.M. Sarafraz, H. Arya, M. Saeedi, D. Ahmadi, Appl. Therm. Eng. (2018)

  18. S. Mukherjee, S.R. Panda, P.C. Mishra, P. Chaudhuri, Int. J. Thermophys. 41 (2020)

  19. H. Rehman, M. Batmunkh, H. Jeong, H. Chung, Adv. Sci. Lett. 6, 96 (2012)

    Article  Google Scholar 

  20. L.G. Fernandez, E. Gonzalez, A. Pizarro, S. Abrigo, J. Choque, M. Tealdi, Lat. Am. Appl. Res. Int. J. 49, 125 (2019)

    Article  Google Scholar 

  21. S. Tanwade, M. Chandola, V. Hivrale, S. Tiwari, S. Marathe (n.d.)

  22. M.R. Esfahani, E.M. Languri, M.R. Nunna, Int. Commun. Heat Mass Transf. 76, 308 (2016)

    Article  Google Scholar 

  23. A. Malvandi, M. Zamani, S.J. Hosseini, S.A. Moshizi, Appl. Therm. Eng. 118, 328 (2017)

    Article  Google Scholar 

  24. H. Setia, R. Gupta, R.K. Wanchoo, Trans. Tech. Publ. 139–149 (2013)

  25. I.M. Mahbubul, E.B. Elcioglu, R. Saidur, M.A. Amalina, Ultrason. Sonochem. 37, 360 (2017)

    Article  Google Scholar 

  26. W. Duangthongsuk, S. Wongwises, Int. J. Heat Mass Transf. 52, 2059 (2009)

    Article  Google Scholar 

  27. M.M. Sarafraz, A.T.K. Abad, Phys. A Stat. Mech. Its Appl. 536, 122505 (2019)

    Article  Google Scholar 

  28. A. Malvandi, D.D. Ganji, Int. J. Therm. Sci. 84, 196 (2014)

    Article  Google Scholar 

  29. M.M. Sarafraz, F. Hormozi, Period. Polytech. Chem. Eng. 58, 37 (2014)

    Article  Google Scholar 

  30. M. Dadhich, O.S. Prajapati, N. Rohatgi, J. Therm. Anal. Calorim. 139, 3197 (2020)

    Article  Google Scholar 

  31. G. Paul, P.K. Das, I. Manna, Int. J. Heat Mass Transf. 94, 390 (2016)

    Article  Google Scholar 

  32. C. Choi, in edited by M. K. E.-A. Ahsan (IntechOpen, Rijeka, 2011), p. Ch. 14

  33. M.C. Paz, M. Conde, E. Suárez, M. Concheiro, Exp. Therm. Fluid Sci. 64, 114 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The authors cordially acknowledge the financial support provided by the Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy, Govt. of India (Sanction no: 39/14/04/2017-BRNS/34301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Purna Chandra Mishra.

Ethics declarations

Conflict of interests

The authors do not have any conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, S., Panda, S.R., Mishra, P.C. et al. Convective Flow Boiling Heat Transfer Enhancement with Aqueous Al2O3 and TiO2 Nanofluids: Experimental Investigation. Int J Thermophys 42, 88 (2021). https://doi.org/10.1007/s10765-021-02850-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02850-9

Keywords

Navigation